Depletions of multi-MeV Electrons and Their Association to Minima in Phase Space Density

2022 ◽  
Author(s):  
Alexander Yurievich Drozdov ◽  
Hayley J Allison ◽  
Yuri Y Shprits ◽  
Maria E. Usanova ◽  
Anthony A. Saikin ◽  
...  
2006 ◽  
Vol 73 (2) ◽  
Author(s):  
G. Ferrari ◽  
R. E. Drullinger ◽  
N. Poli ◽  
F. Sorrentino ◽  
G. M. Tino

2012 ◽  
Vol 117 (A5) ◽  
pp. n/a-n/a ◽  
Author(s):  
Bingxian Luo ◽  
Xinlin Li ◽  
Weichao Tu ◽  
Jiancun Gong ◽  
Siqing Liu

2003 ◽  
Vol 30 (4) ◽  
pp. 517-523 ◽  
Author(s):  
Q. H. Zhang ◽  
J. Barrette ◽  
C. Gale

2021 ◽  
Author(s):  
Milla Kalliokoski ◽  
Emilia Kilpua ◽  
Adnane Osmane ◽  
Allison Jaynes ◽  
Drew Turner ◽  
...  

<p>The energetic electron content in the Van Allen radiation belts surrounding the Earth can vary dramatically on timescales from minutes to days, and these electrons present a hazard for spacecraft traversing the belts. The outer belt response to solar wind driving is however yet largely unpredictable. Here we investigate the driving of the belts by sheath regions preceding interplanetary coronal mass ejections. Electron dynamics in the belts is governed by various competing acceleration, transport and loss processes. We analyzed electron phase space density to compare the energization and loss mechanisms during a geoeffective and a non-geoeffective sheath region. These two case studies indicate that ULF-driven inward and outward radial transport, together with the incursions of the magnetopause, play a key role in causing the outer belt electron flux variations. Chorus waves also likely contribute to energization during the geoeffective event. A global picture of the wave activity is achieved through a chorus proxy utilizing POES measurements. We highlight that also the non-geoeffective sheath presented distinct changes in outer belt electron fluxes, which is also evidenced by our statistical study of outer belt electron fluxes during sheath events. While not as intense as during geoeffective sheaths, significant changes in outer belt electron fluxes occur also during sheaths that do not cause major geomagnetic disturbances.</p>


2016 ◽  
Vol 462 (1) ◽  
pp. 663-680 ◽  
Author(s):  
Iryna Butsky ◽  
Andrea V. Macciò ◽  
Aaron A. Dutton ◽  
Liang Wang ◽  
Aura Obreja ◽  
...  

2004 ◽  
Vol 79 (3) ◽  
pp. 367-370 ◽  
Author(s):  
A. Shevchenko ◽  
A. Jaakkola ◽  
T. Lindvall ◽  
I. Tittonen ◽  
M. Kaivola

2017 ◽  
Vol 470 (1) ◽  
pp. 500-511 ◽  
Author(s):  
Ethan O. Nadler ◽  
S. Peng Oh ◽  
Suoqing Ji

Abstract We investigate the apparent power-law scaling of the pseudo-phase space density (PPSD) in cold dark matter (CDM) haloes. We study fluid collapse, using the close analogy between the gas entropy and the PPSD in the fluid approximation. Our hydrodynamic calculations allow for a precise evaluation of logarithmic derivatives. For scale-free initial conditions, entropy is a power law in Lagrangian (mass) coordinates, but not in Eulerian (radial) coordinates. The deviation from a radial power law arises from incomplete hydrostatic equilibrium (HSE), linked to bulk inflow and mass accretion, and the convergence to the asymptotic central power-law slope is very slow. For more realistic collapse, entropy is not a power law with either radius or mass due to deviations from HSE and scale-dependent initial conditions. Instead, it is a slowly rolling power law that appears approximately linear on a log–log plot. Our fluid calculations recover PPSD power-law slopes and residual amplitudes similar to N-body simulations, indicating that deviations from a power law are not numerical artefacts. In addition, we find that realistic collapse is not self-similar; scalelengths such as the shock radius and the turnaround radius are not power-law functions of time. We therefore argue that the apparent power-law PPSD cannot be used to make detailed dynamical inferences or extrapolate halo profiles inwards, and that it does not indicate any hidden integrals of motion. We also suggest that the apparent agreement between the PPSD and the asymptotic Bertschinger slope is purely coincidental.


2019 ◽  
Vol 124 (2) ◽  
pp. 1143-1156 ◽  
Author(s):  
L. G. Ozeke ◽  
I. R. Mann ◽  
S. G. Claudepierre ◽  
M. Henderson ◽  
S. K. Morley ◽  
...  

1995 ◽  
Vol 52 (2) ◽  
pp. 1423-1440 ◽  
Author(s):  
C. G. Townsend ◽  
N. H. Edwards ◽  
C. J. Cooper ◽  
K. P. Zetie ◽  
C. J. Foot ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document