A moving grid method applied to one-dimensional non-stationary flame propagation

1991 ◽  
Vol 13 (7) ◽  
pp. 869-882 ◽  
Author(s):  
A. Mack ◽  
H. J. Weber ◽  
P. Roth
1998 ◽  
Vol 53 (19) ◽  
pp. 3393-3411 ◽  
Author(s):  
Jörg Frauhammer ◽  
Harald Klein ◽  
Gerhart Eigenberger ◽  
Ulrich Nowak

Author(s):  
Matthew Pinchak ◽  
Timothy Ombrello ◽  
Campbell Carter ◽  
Ephraim Gutmark ◽  
Viswanath Katta

The effect of O 3 on C 2 H 4 /synthetic-air flame propagation at sub-atmospheric pressure was investigated through detailed experiments and simulations. A Hencken burner provided an ideal platform to interrogate flame speed enhancement, producing a steady, laminar, nearly one-dimensional, minimally curved, weakly stretched, and nearly adiabatic flame that could be accurately compared with simulations. The experimental results showed enhancement of up to 7.5% in flame speed for 11 000 ppm of O 3 at stoichiometric conditions. Significantly, the axial stretch rate was also found to affect enhancement. Comparison of the flames for a given burner exit velocity resulted in the enhancement increasing almost 9% over the range of axial stretch rates that was investigated. Two-dimensional simulations agreed well with the experiments in terms of flame speed, as well as the trends of enhancement. Rate of production analysis showed that the primary pathway for O 3 consumption was through reaction with H, leading to early heat release and increased production of OH. Higher flame stretch rates resulted in increased flux through the H+O 3 reaction to provide increased enhancement, due to the thinning of the flame that accompanies higher stretch, and thus results in decreased distance for the H to diffuse before reacting with O 3 .


Sign in / Sign up

Export Citation Format

Share Document