Application of the finite-element method to one-dimensional flame propagation problems

AIAA Journal ◽  
1983 ◽  
Vol 21 (2) ◽  
pp. 262-269 ◽  
Author(s):  
D. N. Lee ◽  
J. I. Ramos
1994 ◽  
Vol 61 (4) ◽  
pp. 919-922 ◽  
Author(s):  
Taein Yeo ◽  
J. R. Barber

When heat is conducted across an interface between two dissimilar materials, theimoelastic distortion affects the contact pressure distribution. The existence of a pressure-sensitive thermal contact resistance at the interface can cause such systems to be unstable in the steady-state. Stability analysis for thermoelastic contact has been conducted by linear perturbation methods for one-dimensional and simple two-dimensional geometries, but analytical solutions become very complicated for finite geometries. A method is therefore proposed in which the finite element method is used to reduce the stability problem to an eigenvalue problem. The linearity of the underlying perturbation problem enables us to conclude that solutions can be obtained in separated-variable form with exponential variation in time. This factor can therefore be removed from the governing equations and the finite element method is used to obtain a time-independent set of homogeneous equations in which the exponential growth rate appears as a linear parameter. We therefore obtain a linear eigenvalue problem and stability of the system requires that all the resulting eigenvalues should have negative real part. The method is discussed in application to the simple one-dimensional system of two contacting rods. The results show good agreement with previous analytical investigations and give additional information about the migration of eigenvalues in the complex plane as the steady-state heat flux is varied.


Author(s):  
К. П. Барахов

Thin-walled structures may contain defects as cracks and holes that are leftovers of the material the construction, is made of or they occur during the operation as a result of, for example, mechanical damage. The presence of holes in the plate causes a concentration of stresses at the boundary of the holes and ultimately leads to premature failure of the structural element. Repair of local damage of modern aircraft structures can be made by creating overlays that are glued to the main structure. The overlay takes on part of the load, unloading the damaged area. This method of repair provides tightness and aerodynamic efficiency to the structure. The calculation of the stress state of such glued structures is usually performed by using the finite element method. The classic models of the stress state of overlapped joints are one-dimensional. That is, the change of the stress state along only one coordinate is considered. At the same time, the connections of a rectangular form are also considered. The purpose of this work is to create a mathematical model of the stress state of circular axisymmetric adhesive joints and to build an appropriate analytical solution to the problem. It is assumed that the bending of the plates is absent; the deformation of the plates is even by thickness. The adhesive layer works only on the shift. The main plate and the overlay are considered isotropic. The solution is built on polar coordinates. The stress state of the connection depends only on the radial coordinate, i.e. one-dimensional. The solution is obtained in analytical form. This mathematical model is a generalization of the classical model of the adhesive connection of Volkersen to a circular or annular region and is considered for the first time. Boundary conditions are met exactly. The satisfaction of marginal conditions, as well as boundary conditions, leads to a system of linear equations with respect to the unknown coefficients of the obtained solutions. The model problem is solved and the numerical results are compared with the results of calculations performed by using the finite element method. It is shown that the proposed model has sufficient accuracy for engineering problems and can be used to solve problems of the design of aerospace structures.


Sign in / Sign up

Export Citation Format

Share Document