axial stretch
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 3)

H-INDEX

14
(FIVE YEARS 1)

Author(s):  
Sara Makaremi ◽  
Wankei Wan ◽  
Jeffrey L. Hutter

With increasing interest in the use of polymeric nanofibres for biomedical applications such as composite materials and tissue scaffolding, accurate determination of their mechanical properties is essential. Fibre orientation and the stiffness of individual fibres determine the overall elastic modulus of nanofibrous materials. However, accurate measurements of the elastic properties of single fibres are challenging at the nanoscale, and distinguishing between results arising from competing models can be difficult. We report here on investigations of the Young’s modulus of single poly(ε-caprolactone) (PCL) electrospun nanofibres by measuring the deflection of fibres due to a loading force applied by an atomic force microscope (AFM). Although such testing is often performed with the tacit assumption that bending resistance alone is responsible for the fibre response, we found that consistent results could only be obtained if the overall fibre stretch is taken into account. The Young’s modulus we measured for electrospun PCL fibres with diameters ranging from 100 to 400 nm was 0.48±0.03 GPa, which is similar to the modulus of bulk PCL, with no apparent dependence on diameter. Our findings highlight the importance of the assumptions used in the analysis of bending data, as discounting the effect of axial stretch and pre-existing tension typically lead to an overestimate of the Young’s modulus.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mohammad S. Razavi ◽  
Julie Leonard-Duke ◽  
Becky Hardie ◽  
J. Brandon Dixon ◽  
Rudolph L. Gleason

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Alexander W. Caulk ◽  
Jay D. Humphrey ◽  
Sae-Il Murtada

Vascular smooth muscle cells (VSMCs) can regulate arterial mechanics via contractile activity in response to changing mechanical and chemical signals. Contractility is traditionally evaluated via uniaxial isometric testing of isolated rings despite the in vivo environment being very different. Most blood vessels maintain a locally preferred value of in vivo axial stretch while subjected to changes in distending pressure, but both of these phenomena are obscured in uniaxial isometric testing. Few studies have rigorously analyzed the role of in vivo loading conditions in smooth muscle function. Thus, we evaluated effects of uniaxial versus biaxial deformations on smooth muscle contractility by stimulating two regions of the mouse aorta with different vasoconstrictors using one of three testing protocols: (i) uniaxial isometric testing, (ii) biaxial isometric testing, and (iii) axially isometric plus isobaric testing. Comparison of methods (i) and (ii) revealed increased sensitivity and contractile capacity to potassium chloride and phenylephrine (PE) with biaxial isometric testing, and comparison of methods (ii) and (iii) revealed a further increase in contractile capacity with isometric plus isobaric testing. Importantly, regional differences in estimated in vivo axial stretch suggest locally distinct optimal biaxial configurations for achieving maximal smooth muscle contraction, which can only be revealed with biaxial testing. Such differences highlight the importance of considering in vivo loading and geometric configurations when evaluating smooth muscle function. Given the physiologic relevance of axial extension and luminal pressurization, we submit that, when possible, axially isometric plus isobaric testing should be employed to evaluate vascular smooth muscle contractile function.


2018 ◽  
Author(s):  
M. A. Caporizzo ◽  
C. Y. Chen ◽  
A. K. Salomon ◽  
K. Bedi ◽  
K. B. Margulies ◽  
...  

ABSTRACTBackgroundMicrotubules (MT) buckle and bear load during myocyte contraction, a behavior enhanced by post-translational detyrosination. This buckling suggests a spring-like resistance against myocyte shortening, which could store energy and aid myocyte relaxation. Despite this visual suggesting of elastic behavior, the precise mechanical contribution of the cardiac MT network remains to be defined.MethodsHere we experimentally and computationally probe the mechanical contribution of stable microtubules and their influence on myocyte function. We use multiple approaches to interrogate viscoelasticity and cell shortening in primary murine myocytes where either MTs are depolymerized or detyrosination is suppressed, and use the results to inform a mathematical model of myocyte viscoelasticity.ResultsMT ablation by colchicine concurrently enhances both the degree of shortening and speed of relaxation, a finding inconsistent with simple spring-like microtubule behavior, and suggestive of a viscoelastic mechanism. Axial stretch and transverse indentation confirm that microtubules increase myocyte viscoelasticity. Specifically, increasing the rate of strain amplifies the MT contribution to myocyte stiffness. Suppressing MT detyrosination with parthenolide or via overexpression of tubulin tyrosine ligase (TTL) has mechanical consequences that closely resemble colchicine, suggesting that the mechanical impact of MTs relies on a detyrosination-dependent linkage with the myocyte cytoskeleton. Mathematical modeling affirms that alterations in cell shortening conferred by either MT destabilization or tyrosination can be attributed to internal changes in myocyte viscoelasticity.ConclusionsThe results suggest that the cardiac MT network regulates contractile amplitudes and kinetics by acting as a cytoskeletal shock-absorber, whereby MTs provide breakable cross-links between the sarcomeric and non-sarcomeric cytoskeleton that resist rapid length changes during both shortening and stretch.


Mechanik ◽  
2017 ◽  
Vol 90 (11) ◽  
pp. 1063-1065
Author(s):  
Łukasz Wzorek ◽  
Mateusz Wędrychowicz ◽  
Tomasz Skrzekut ◽  
Piotr Noga ◽  
Marcel Wiewióra ◽  
...  

Two extrudates made of AlSi11 alloy have been produced in the co-extrusion process: solid billet and machining chips from the rolling process. The microstructure was observed, mechanical properties were determined on the basis of the 1-axial stretch test, and the fatigue tests were performed to determine the fatigue resistance of the AlSi11 alloy.


2017 ◽  
Vol 23 (6) ◽  
pp. 950-983 ◽  
Author(s):  
Prashant Saxena

A thick-walled circular cylindrical tube made of an incompressible magnetoelastic material is subjected to a finite static deformation in the presence of an internal pressure, an axial stretch and an azimuthal or an axial magnetic field. The dependence of the static magnetoelastic deformation on the intensity of the applied magnetic field is analysed for two different magnetoelastic energy density functions. Then, superimposed on this static configuration, incremental axisymmetric motions of the tube and their dependence on the applied magnetic field and deformation parameters are studied. In particular, we show that magnetoelastic coupled waves exist only for particle motions in the azimuthal direction. For particle motion in radial and axial directions, only purely mechanical waves are able to propagate when a magnetic field is absent. The wave speeds as well as the stability of the tube can be controlled by changing the internal pressure, axial stretch and applied magnetic field that demonstrates the applicability of magneto-elastomers as wave guides and vibration absorbers.


Author(s):  
E. David Bell ◽  
Anthony J. Donato ◽  
Kenneth L. Monson

2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Ruoya Wang ◽  
Julia Raykin ◽  
Luke P. Brewster ◽  
Rudolph L. Gleason

Ex vivo mechanical testing has provided tremendous insight toward prediction of the in vivo mechanical behavior and local mechanical environment of the arterial wall; however, the role of perivascular support on the local mechanical behavior of arteries is not well understood. Here, we present a novel approach for quantifying the impact of the perivascular support on arterial mechanics using intravascular ultrasound (IVUS) on cadaveric porcine hearts. We performed pressure-diameter tests (n = 5) on the left anterior descending coronary arteries (LADCAs) in situ while embedded in their native perivascular environment using IVUS imaging and after removal of the perivascular support of the artery. We then performed standard cylindrical biaxial testing on these vessels ex vivo and compared the results. Removal of the perivascular support resulted in an upward shift of the pressure-diameter curve. Ex vivo testing, however, showed significantly lower circumferential compliance compared to the in situ configuration. On a second set of arteries, local axial stretch ratios were quantified (n = 5) along the length of the arteries. The average in situ axial stretch ratio was 1.28 ± 0.16; however, local axial stretch ratios showed significant variability, ranging from 1.01 to 1.70. Taken together, the data suggest that both the perivascular loading and the axial tethering have an important role in arterial mechanics. Combining nondestructive testing using IVUS with traditional ex vivo cylindrical biaxial testing yields a more comprehensive assessment of the mechanical behavior of arteries.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Liang Wang ◽  
Jian Zhu ◽  
Habib Samady ◽  
David Monoly ◽  
Jie Zheng ◽  
...  

Accurate stress and strain calculations are important for plaque progression and vulnerability assessment. Models based on in vivo data often need to form geometries with zero-stress/strain conditions. The goal of this paper is to use IVUS-based near-idealized geometries and introduce a three-step model construction process to include residual stress, axial shrinkage, and circumferential shrinkage and investigate their impacts on stress and strain calculations. In Vivo intravascular ultrasound (IVUS) data of human coronary were acquired for model construction. In Vivo IVUS movie data were acquired and used to determine patient-specific material parameter values. A three-step modeling procedure was used to make our model: (a) wrap the zero-stress vessel sector to obtain the residual stress; (b) stretch the vessel axially to its length in vivo; and (c) pressurize the vessel to recover its in vivo geometry. Eight models were constructed for our investigation. Wrapping led to reduced lumen and cap stress and increased out boundary stress. The model with axial stretch, circumferential shrink, but no wrapping overestimated lumen and cap stress by 182% and 448%, respectively. The model with wrapping, circumferential shrink, but no axial stretch predicted average lumen stress and cap stress as 0.76 kPa and −15 kPa. The same model with 10% axial stretch had 42.53 kPa lumen stress and 29.0 kPa cap stress, respectively. Skipping circumferential shrinkage leads to overexpansion of the vessel and incorrect stress/strain calculations. Vessel stiffness increase (100%) leads to 75% lumen stress increase and 102% cap stress increase.


2016 ◽  
Vol 138 (12) ◽  
Author(s):  
Fatemeh Fatemifar ◽  
Hai-Chao Han

The stability of the arteries under in vivo pressure and axial tension loads is essential to normal arterial function, and lumen collapse due to buckling can hinder the blood flow. The objective of this study was to develop the lumen buckling equation for nonlinear anisotropic thick-walled arteries to determine the effect of axial tension. The theoretical equation was developed using exponential Fung strain function, and the effects of axial tension and residual stress on the critical buckling pressure were illustrated for porcine coronary arteries. The buckling behavior was also simulated using finite-element analysis. Our results demonstrated that lumen collapse of arteries could occur when the transmural pressure is negative and exceeded a critical value. This value depends upon the axial stretch ratio and material properties of the arterial wall. Axial tensions show a biphasic effect on the critical buckling pressure. The lumen aspect ratio of arteries increases nonlinearly with increasing external pressure beyond the critical value as the lumen collapses. These results enhance our understanding of artery lumen collapse behavior.


Sign in / Sign up

Export Citation Format

Share Document