A higher-order boundary element method for three-dimensional potential problems

1995 ◽  
Vol 21 (4) ◽  
pp. 311-321 ◽  
Author(s):  
Zang Yuelong ◽  
Cheng Yumin ◽  
Zhang Wu
Author(s):  
Hassan Ghassemi ◽  
Ahmad Reza Kohansal ◽  
Abdollah Ardeshir

In this paper a three-dimensional numerical model using the higher order boundary element method (HOBEM) is developed to analyze hydrodynamic characteristics of hydrofoils beneath the free surface. The method uses combinations of the source and doublet by linear disctribution on each element of the body and free surface. The geometry of the element is represented by quadratic bilinear elements. The method is applied to three-dimensional hydrofoils of the symmetric Joukowski and NACA4412 profiles moving beneath the free surface in constant speed. Some results (pressure distribution, lift, wave-making drag and wave elevation and wave pattern) are presented. It is shown that this approach is accurate, efficient and the results are in good agreement with the experimental measurements and other calculated results.


2012 ◽  
Vol 468-471 ◽  
pp. 426-429
Author(s):  
Chun Xiao Yu ◽  
Hai Yuan Yu ◽  
Yi Ming Chen

Vectorization expressions of a Fast Multipole Boundary Element Method (FM-BEM) based on Legendre series are presented for three-dimensional (3-D) potential problems. The formulas are applied to the expression of fundamental solutions for the Boundary Element Method(BEM). Truncation errors of the multipole expansion and local expansion are deduced and analyzed. It shows that the errors can be controlled by truncation terms.


Sign in / Sign up

Export Citation Format

Share Document