legendre series
Recently Published Documents


TOTAL DOCUMENTS

108
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 13 (15) ◽  
pp. 2882
Author(s):  
Hao Chen ◽  
Shane R. Cloude ◽  
Joanne C. White

In this paper, we consider a new method for forest canopy height estimation using TanDEM-X single-pass radar interferometry. We exploit available information from sample-based, space-borne LiDAR systems, such as the Global Ecosystem Dynamics Investigation (GEDI) sensor, which offers high-resolution vertical profiling of forest canopies. To respond to this, we have developed a new extended Fourier-Legendre series approach for fusing high-resolution (but sparsely spatially sampled) GEDI LiDAR waveforms with TanDEM-X radar interferometric data to improve wide-area and wall-to-wall estimation of forest canopy height. Our key methodological development is a fusion of the standard uniform assumption for the vertical structure function (the SINC function) with LiDAR vertical profiles using a Fourier-Legendre approach, which produces a convergent series of approximations of the LiDAR profiles matched to the interferometric baseline. Our results showed that in our test site, the Petawawa Research Forest, the SINC function is more accurate in areas with shorter canopy heights (<~27 m). In taller forests, the SINC approach underestimates forest canopy height, whereas the Legendre approach avails upon simulated GEDI forest structural vertical profiles to overcome SINC underestimation issues. Overall, the SINC + Legendre approach improved canopy height estimates (RMSE = 1.29 m) compared to the SINC approach (RMSE = 4.1 m).


Author(s):  
Sandeep Kumar Paul ◽  
Manoj Sahni

In this paper, a functionally graded thick hollow sphere is considered for the analysis of two-dimensional steady state mechanical stress in the radial and circumferential directions under mechanical loading. Modulus of elasticity is varying with continuous nonlinear variation along the radial direction and Poisson’s ratio is kept as constant. The Legendre series and Euler differential equation are used to solve Navier equations. Geometry of the sphere is assumed in spherical coordinate system. Applying mechanical boundary conditions at inner and outer radii, we have carried out the analytical solutions for stresses, strains and displacements. In the numerical example, only internal pressure is varying along circumferential direction and external pressure is kept as zero. Displacements and mechanical stresses are presented graphically and the results are discussed numerically.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1009
Author(s):  
Enrico De Micheli

In this paper, we consider the inverse scattering problem and, in particular, the problem of reconstructing the spectral density associated with the Yukawian potentials from the sequence of the partial-waves fℓ of the Fourier–Legendre expansion of the scattering amplitude. We prove that if the partial-waves fℓ satisfy a suitable Hausdorff-type condition, then they can be uniquely interpolated by a function f˜(λ)∈C, analytic in a half-plane. Assuming also the Martin condition to hold, we can prove that the Fourier–Legendre expansion of the scattering amplitude converges uniformly to a function f(θ)∈C (θ being the complexified scattering angle), which is analytic in a strip contained in the θ-plane. This result is obtained mainly through geometrical methods by replacing the analysis on the complex cosθ-plane with the analysis on a suitable complex hyperboloid. The double analytic symmetry of the scattering amplitude is therefore made manifest by its analyticity properties in the λ- and θ-planes. The function f(θ) is shown to have a holomorphic extension to a cut-domain, and from the discontinuity across the cuts we can iteratively reconstruct the spectral density σ(μ) associated with the class of Yukawian potentials. A reconstruction algorithm which makes use of Pollaczeck and Laguerre polynomials is finally given.


2021 ◽  
Vol 2 (1) ◽  
pp. 43-50
Author(s):  
Suresh Kumar Sahani ◽  
Vishnu Narayan Mishra ◽  
Narayan Prasad Pahari

In this paper, we prove a main theorem dealing the matrix summability of Legendre series using non-negative monotonic non-increasing sequences of function. This paper is more general than [9], [12] and [22].


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Rajai Alassar

Abstract Heat transfer from a composite prolate spheroid under the third-type boundary condition is investigated using a Legendre series expansion. The model is verified against published data on cooling boiled eggs and also against the asymptotic solution of a composite sphere. The impact of Biot number on the heat transfer in spheroids with realistic dimensions and properties, such as eggs and olives, is investigated. The results are also presented for varying conductivity ratios and fractional volume of the inner part of the spheroid.


2020 ◽  
Vol 25 (10) ◽  
pp. 1904-1923
Author(s):  
Youxue Ban ◽  
Changwen Mi

For a solid surface or interface that is subjected to transverse loading, the influence of its flexural resistibility to bending deformation becomes significant. A spherical inhomogeneity or void embedded in an infinite elastic medium under the application of nonhydrostatic loads represents a typical example. In this work, we consider the most fundamental loading of a far-field unidirectional tension. Analytical displacements and stresses are developed by the coupling of a Steigmann–Ogden surface mechanical model, the simple method of Boussinesq displacement potentials, the semi-inverse method of elasticity, and Legendre series representations of spherical harmonics. The problem is then solved by converting the equilibrium equations of displacement into a linear system with respect to the Legendre series coefficients. The developed solutions are general in the sense that they may reduce to their classical or Gurtin–Murdoch counterparts as special cases. Analytical expressions reveal that the derived solution depends on four dimensionless ratios from among surface material parameters, shear moduli ratio, and inhomogeneity or void radius. In particular, instead of depending on both flexural parameters in the moment–curvature relation, one fixed combination is sufficient to represent the surface flexural rigidity. This is in contrast with the influence of the in-plane elastic stiffness, in which both surface Lamé parameters matter. Parametric studies further demonstrate that, for metallic inhomogeneities or voids with radii between 10 nm and 100 nm, the effects of surface flexural rigidity on stress distributions and stress concentrations are significant.


2019 ◽  
Vol 64 (6) ◽  
pp. 669-675 ◽  
Author(s):  
Abdulaziz Alsayyari

Abstract A new technique for electronic fetal monitoring (EFM) using an efficient structure of neural networks based on the Legendre series is presented in this paper. Such a structure is achieved by training a Legendre series-based neural network (LNN) to classify the different fetal states based on recorded cardiotocographic (CTG) data sets given by others. These data sets consist of measurements of fetal heart rate (FHR) and uterine contraction (UC). The applied LNN utilizes a Legendre series expansion for the input vectors and, hence, has the capability to produce explicit equations describing multi-input multi-output systems. Simulations of the proposed technique in EFM demonstrate its high efficiency. Training the LNN requires a few number of iterations (5–10 epochs). The applied technique makes the classification of the fetal state available through equations combining the trained LNN weights and the current measured CTG record. A comparison of performance between the proposed LNN and other popular neural network techniques such as the Volterra neural network (VNN) in EFM is provided. The comparison shows that, the LNN outperforms the VNN in case of less computational requirements and fast convergence with a lower mean square error.


Sign in / Sign up

Export Citation Format

Share Document