Higher Order Boundary Element Method Applied to the Hydrofoil Beneath the Free Surface

Author(s):  
Hassan Ghassemi ◽  
Ahmad Reza Kohansal ◽  
Abdollah Ardeshir

In this paper a three-dimensional numerical model using the higher order boundary element method (HOBEM) is developed to analyze hydrodynamic characteristics of hydrofoils beneath the free surface. The method uses combinations of the source and doublet by linear disctribution on each element of the body and free surface. The geometry of the element is represented by quadratic bilinear elements. The method is applied to three-dimensional hydrofoils of the symmetric Joukowski and NACA4412 profiles moving beneath the free surface in constant speed. Some results (pressure distribution, lift, wave-making drag and wave elevation and wave pattern) are presented. It is shown that this approach is accurate, efficient and the results are in good agreement with the experimental measurements and other calculated results.

2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Jens B. Helmers ◽  
Geir Skeie

A boundary element method (BEM) designed for solving the symmetric generalized Wagner formulation is presented. The flow field is parameterized with analytical functions and can describe the kinematics at any free surface or body location using a small set of parameters obtained from a collocation scheme. The method is fast and robust for all deadrise angles, even for flat plate impacts where classical BEMs usually fail. The method is easy to implement and is easy to apply. Given a smooth body contour the only additional input is the requested accuracy. There is no mesh involved. When solving the temporal problem, we exploit the analytical distribution of free surface velocities and apply an integral equation formalism consistent with the Wagner formulation. The output of the spatial and temporal scheme is a set of functions and parameters suitable for fast computation of the complete kinematics for any impact trajectory given the position of the keel and the body velocity. The method is developed to be combined with seakeeping programs for statistical impact and whipping assessment.


Author(s):  
Jens B. Helmers ◽  
Geir Skeie

A boundary element method designed for solving the symmetric Generalized Wagner formulation is presented. The flow field is parameterized with analytical functions and can describe the kinematics at any free surface or body location using a small set of parameters obtained from a collocation scheme. The method is fast and robust for all deadrise angles, even for flat plate impacts where classical boundary element methods usually fails. The method is easy to implement and is easy to apply. Given a smooth body contour the only additional input is the requested accuracy. There is no mesh involved. When solving the temporal problem we exploit the analytical distribution of free surface velocities and apply an integral equation formalism consistent with the Wagner formulation. The output of the spatial and temporal scheme is a set of functions and parameters suitable for fast computation of the complete kinematics for any impact trajectory given the position of the keel and the body velocity. The method is developed to be combined with seakeeping programs for statistical impact and whipping assessment.


2012 ◽  
Vol 9 (1) ◽  
pp. 94-97
Author(s):  
Yu.A. Itkulova

In the present work creeping three-dimensional flows of a viscous liquid in a cylindrical tube and a channel of variable cross-section are studied. A qualitative triangulation of the surface of a cylindrical tube, a smoothed and experimental channel of a variable cross section is constructed. The problem is solved numerically using boundary element method in several modifications for a periodic and non-periodic flows. The obtained numerical results are compared with the analytical solution for the Poiseuille flow.


2012 ◽  
Vol 9 (1) ◽  
pp. 142-146
Author(s):  
O.A. Solnyshkina

In this work the 3D dynamics of two immiscible liquids in unbounded domain at low Reynolds numbers is considered. The numerical method is based on the boundary element method, which is very efficient for simulation of the three-dimensional problems in infinite domains. To accelerate calculations and increase the problem size, a heterogeneous approach to parallelization of the computations on the central (CPU) and graphics (GPU) processors is applied. To accelerate the iterative solver (GMRES) and overcome the limitations associated with the size of the memory of the computation system, the software component of the matrix-vector product


2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


Sign in / Sign up

Export Citation Format

Share Document