Towards simulation of flapping wings using immersed boundary method

2012 ◽  
Vol 71 (4) ◽  
pp. 522-536 ◽  
Author(s):  
X. Q. Zhang ◽  
P. Theissen ◽  
J. U. Schlüter
2016 ◽  
Vol 13 (05) ◽  
pp. 1650025 ◽  
Author(s):  
Dingyi Pan ◽  
Jian Deng ◽  
Xueming Shao ◽  
Zubin Liu

The modified immersed boundary method is introduced and applied to study the propulsive mechanism of a tandem flapping wings system. The effects of tandem wings distance and phase lag between the two flapping wings are investigated. Thrust force of the upstream wing is nearly constant and close to the magnitude of single flapping wing system. Thrust force of second wing is influenced by the distance and phase lag. With specific parameters, the second wing can obtain a maximum thrust which is larger than the one of first wing. The flow structures of the wake flow are classified into three different formations, and they are correlated to the trends of thrust force. The effects of distance and phase lag are coupled other than isolated. It is possible to lower down the power consumption of this tandem flapping wings system and enhance the total thrust force of the system at the same time.


Sign in / Sign up

Export Citation Format

Share Document