scholarly journals Near universal detection of alterations inCTNNB1and Wnt pathway regulators in desmoid-type fibromatosis by whole-exome sequencing and genomic analysis

2015 ◽  
Vol 54 (10) ◽  
pp. 606-615 ◽  
Author(s):  
Aimee M. Crago ◽  
Juliann Chmielecki ◽  
Mara Rosenberg ◽  
Rachael O'Connor ◽  
Caitlin Byrne ◽  
...  
Author(s):  
Yan Zhao ◽  
Lee-kai Wang ◽  
Ascia Eskin ◽  
Xuedong Kang ◽  
Viviana M. Fajardo ◽  
...  

Abstract Among neonatal cardiomyopathies, primary endocardial fibroelastosis (pEFE) remains a mysterious disease of the endomyocardium that is poorly genetically characterized, affecting 1/5000 live births and accounting for 25% of the entire pediatric dilated cardiomyopathy (DCM) with a devastating course and grave prognosis. To investigate the potential genetic contribution to pEFE, we performed integrative genomic analysis, using whole exome sequencing (WES) and RNA-seq in a female infant with confirmed pathological diagnosis of pEFE. Within regions of homozygosity in the proband genome, WES analysis revealed novel parent-transmitted homozygous mutations affecting three genes with known roles in cilia assembly or function. Among them, a novel homozygous variant [c.1943delA] of uncertain significance in ALMS1 was prioritized for functional genomic and mechanistic analysis. Loss of function mutations of ALMS1 have been implicated in Alstrom syndrome (AS) [OMIM 203800], a rare recessive ciliopathy that has been associated with cardiomyopathy. The variant of interest results in a frameshift introducing a premature stop codon. RNA-seq of the proband’s dermal fibroblasts confirmed the impact of the novel ALMS1 variant on RNA-seq reads and revealed dysregulated cellular signaling and function, including the induction of epithelial mesenchymal transition (EMT) and activation of TGFβ signaling. ALMS1 loss enhanced cellular migration in patient fibroblasts as well as neonatal cardiac fibroblasts, while ALMS1-depleted cardiomyocytes exhibited enhanced proliferation activity. Herein, we present the unique pathological features of pEFE compared to DCM and utilize integrated genomic analysis to elucidate the molecular impact of a novel mutation in ALMS1 gene in an AS case. Our report provides insights into pEFE etiology and suggests, for the first time to our knowledge, ciliopathy as a potential underlying mechanism for this poorly understood and incurable form of neonatal cardiomyopathy. Key message Primary endocardial fibroelastosis (pEFE) is a rare form of neonatal cardiomyopathy that occurs in 1/5000 live births with significant consequences but unknown etiology. Integrated genomics analysis (whole exome sequencing and RNA sequencing) elucidates novel genetic contribution to pEFE etiology. In this case, the cardiac manifestation in Alstrom syndrome is pEFE. To our knowledge, this report provides the first evidence linking ciliopathy to pEFE etiology. Infants with pEFE should be examined for syndromic features of Alstrom syndrome. Our findings lead to a better understanding of the molecular mechanisms of pEFE, paving the way to potential diagnostic and therapeutic applications.


Aging ◽  
2021 ◽  
Author(s):  
Yi Yang ◽  
Xiaodong Gu ◽  
Zhenyang Li ◽  
Chuang Zheng ◽  
Zihao Wang ◽  
...  

2017 ◽  
Vol 10 (1) ◽  
pp. 11-19
Author(s):  
Augusto C. Soares dos Santos Junior ◽  
Luciana B. Rodrigues ◽  
Raony G. Corrêa Do Carmo Lisboa Cardenas ◽  
Patricia G.P. Couto ◽  
Luiz A. Cunha de Marco ◽  
...  

Introduction: Congenital megaureter constitutes the second most frequent cause of hydronephrosis in children. There is still much debate on what extent environmental or genetic factors are involved in the pathogenesis of congenital megaureter. Objectives: This study aimed at investigating a pair of monozygotic twins discordant for the expression of bilateral congenital megaureter using the whole exome sequencing technique. Methods: Peripheral blood DNA was extracted and then sequenced using the whole exome technique from a pair of twins discordant for the presence of bilateral congenital refluxing unobstructed megaureter, his parents and a set of 11 non-related individuals with confirmed diagnosis of congenital megaureter. The DNA of the set of 11 non-related individuals was pooled in three groups. The monozygotic twins and their parents had DNA samples sequenced separately. Sanger validation was performed after data was filtered. Results: In the proband were identified 256 candidate genes, including TBX3, GATA6, DHH, LDB3, and HNF1, which are expressed in the urinary tract during the embryonic period. After Sanger validation, the SNVs found in the genes TBX3, GATA6, DHH and LDB3 were not confirmed in the proband. The SNV chr17:36104650 in the HNF1b gene was confirmed in the proband, his twin brother and the mother, however was not found in the pool of 11 non-related individuals with congenital megaureter. Conclusion: Due to the possible complex causative network of genetic variations and the challenges regarding the use of the whole exome sequencing technique we could not unequivocally associate the genetic variations identified in this study with the development of the congenital megaureter.


Oncotarget ◽  
2017 ◽  
Vol 8 (34) ◽  
pp. 56684-56697 ◽  
Author(s):  
Yuanyuan Li ◽  
Miki Ohira ◽  
Yong Zhou ◽  
Teng Xiong ◽  
Wen Luo ◽  
...  

2014 ◽  
Vol 62 (S 02) ◽  
Author(s):  
M. Hitz ◽  
S. Al-Turki ◽  
A. Schalinski ◽  
U. Bauer ◽  
T. Pickardt ◽  
...  

2018 ◽  
Author(s):  
Yasemin Dincer ◽  
Michael Zech ◽  
Matias Wagner ◽  
Nikolai Jung ◽  
Volker Mall ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document