scholarly journals Non‐stimulated regions in early visual cortex encode the contents of conscious visual perception

2021 ◽  
Author(s):  
Bianca M. van Kemenade ◽  
Gregor Wilbertz ◽  
Annalena Müller ◽  
Philipp Sterzer
NeuroImage ◽  
2010 ◽  
Vol 51 (2) ◽  
pp. 828-834 ◽  
Author(s):  
Mika Koivisto ◽  
Teemu Mäntylä ◽  
Juha Silvanto

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Domenica Veniero ◽  
Joachim Gross ◽  
Stephanie Morand ◽  
Felix Duecker ◽  
Alexander T. Sack ◽  
...  

AbstractVoluntary allocation of visual attention is controlled by top-down signals generated within the Frontal Eye Fields (FEFs) that can change the excitability of lower-level visual areas. However, the mechanism through which this control is achieved remains elusive. Here, we emulated the generation of an attentional signal using single-pulse transcranial magnetic stimulation to activate the FEFs and tracked its consequences over the visual cortex. First, we documented changes to brain oscillations using electroencephalography and found evidence for a phase reset over occipital sites at beta frequency. We then probed for perceptual consequences of this top-down triggered phase reset and assessed its anatomical specificity. We show that FEF activation leads to cyclic modulation of visual perception and extrastriate but not primary visual cortex excitability, again at beta frequency. We conclude that top-down signals originating in FEF causally shape visual cortex activity and perception through mechanisms of oscillatory realignment.


2015 ◽  
Vol 113 (9) ◽  
pp. 3159-3171 ◽  
Author(s):  
Caroline D. B. Luft ◽  
Alan Meeson ◽  
Andrew E. Welchman ◽  
Zoe Kourtzi

Learning the structure of the environment is critical for interpreting the current scene and predicting upcoming events. However, the brain mechanisms that support our ability to translate knowledge about scene statistics to sensory predictions remain largely unknown. Here we provide evidence that learning of temporal regularities shapes representations in early visual cortex that relate to our ability to predict sensory events. We tested the participants' ability to predict the orientation of a test stimulus after exposure to sequences of leftward- or rightward-oriented gratings. Using fMRI decoding, we identified brain patterns related to the observers' visual predictions rather than stimulus-driven activity. Decoding of predicted orientations following structured sequences was enhanced after training, while decoding of cued orientations following exposure to random sequences did not change. These predictive representations appear to be driven by the same large-scale neural populations that encode actual stimulus orientation and to be specific to the learned sequence structure. Thus our findings provide evidence that learning temporal structures supports our ability to predict future events by reactivating selective sensory representations as early as in primary visual cortex.


2014 ◽  
Vol 34 (22) ◽  
pp. 7493-7500 ◽  
Author(s):  
S. E. Bosch ◽  
J. F. M. Jehee ◽  
G. Fernandez ◽  
C. F. Doeller

Sign in / Sign up

Export Citation Format

Share Document