scholarly journals Revised runoff curve number for runoff prediction in the Loess Plateau of China

2021 ◽  
Author(s):  
Wenhai Shi ◽  
Ni Wang ◽  
Miaomiao Wang ◽  
Donghao Li
2020 ◽  
Vol 51 (3) ◽  
pp. 443-455
Author(s):  
Wenhai Shi ◽  
Ni Wang

Abstract In the Soil Conservation Service Curve Number (SCS-CN) method for estimating runoff, three antecedent moisture condition (AMC) levels produce a discrete relation between the curve number (CN) and soil water content, which results in corresponding sudden jumps in estimated runoff. An improved soil moisture accounting (SMA)-based SCS-CN method that incorporates a continuous function for the AMC was developed to obviate sudden jumps in estimated runoff. However, this method ignores the effect of storm duration on surface runoff, yet this is an important component of rainfall-runoff processes. In this study, the SMA-based method for runoff estimation was modified by incorporating storm duration and a revised SMA procedure. Then, the performance of the proposed method was compared to both the original SCS-CN and SMA-based methods by applying them in three experimental watersheds located on the Loess Plateau, China. The results indicate that the SCS-CN method underestimates large runoff events and overestimates small runoff events, yielding an efficiency of 0.626 in calibration and 0.051 in validation; the SMA-based method has improved runoff estimation in both calibration (efficiency = 0.702) and validation (efficiency = 0.481). However, the proposed method performed significantly better than both, yielding model efficiencies of 0.810 and 0.779 in calibration and validation, respectively.


2007 ◽  
Vol 21 (11) ◽  
pp. 1471-1481 ◽  
Author(s):  
Mingbin Huang ◽  
Jacques Gallichand ◽  
Cuiyun Dong ◽  
Zhanli Wang ◽  
Mingan Shao

2012 ◽  
Vol 9 (3) ◽  
pp. 4193-4233 ◽  
Author(s):  
G. Y. Gao ◽  
B. J. Fu ◽  
Y. H. Lü ◽  
Y. Liu ◽  
S. Wang ◽  
...  

Abstract. Predicting event runoff and soil loss under different land covers is essential to quantitatively evaluate the hydrological responses of vegetation restoration in the Loess Plateau of China. The Soil Conservation Service Curve Number (SCS-CN) and Revised Universal Soil Loss Equation (RUSLE) models are widely used in this region to this end. This study incorporated antecedent moisture condition (AMC) in runoff production and initial abstraction of the SCS-CN model, and considered the direct effect of runoff on event soil loss by adopting a rainfall-runoff erosivity factor in the RUSLE model. The modified SCS-CN and RUSLE models were coupled to link rainfall-runoff-erosion modeling. The effects of AMC, slope gradient and initial abstraction ratio on curve number of SCS-CN, as well as those of vegetation cover on cover-management factor of RUSLE were also considered. Three runoff plot groups covered by sparse young trees, native shrubs and dense tussock, respectively, were established in the Yangjuangou catchment of Loess Plateau. Rainfall, runoff and soil loss were monitored during the rainy season in 2008–2011 to test the applicability of the proposed approach. The original SCS-CN model significantly underestimated the event runoff, especially for the rainfall events that have large 5-day antecedent precipitation, whereas the modified SCS-CN model could predict event runoff well with Nash-Sutcliffe model efficiency (EF) over 0.85. The original RUSLE model overestimated low values of measured soil loss and under-predicted the high values with EF only about 0.30. In contrast to it, the prediction accuracy of the modified RUSLE model improved satisfactorily with EF over 0.70. Our results indicated that the AMC should be explicitly incorporated in runoff production, and direct consideration of runoff should be included in predicting event soil loss. Coupling the modified SCS-CN and RUSLE models appeared to be appropriate for runoff and soil loss simulation at plot scale in the Loess Plateau. The limitations and future study scopes of the proposed models were also indicated.


2012 ◽  
Vol 16 (7) ◽  
pp. 2347-2364 ◽  
Author(s):  
G. Y. Gao ◽  
B. J. Fu ◽  
Y. H. Lü ◽  
Y. Liu ◽  
S. Wang ◽  
...  

Abstract. Predicting event runoff and soil loss under different land covers is essential to quantitatively evaluate the hydrological responses of vegetation restoration in the Loess Plateau of China. The Soil Conservation Service curve number (SCS-CN) and Revised Universal Soil Loss Equation (RUSLE) models are widely used in this region to this end. This study incorporated antecedent moisture condition (AMC) in runoff production and initial abstraction of the SCS-CN model, and considered the direct effect of runoff on event soil loss by adopting a rainfall-runoff erosivity factor in the RUSLE model. The modified SCS-CN and RUSLE models were coupled to link rainfall-runoff-erosion modeling. The effects of AMC, slope gradient and initial abstraction ratio on curve number of SCS-CN, as well as those of vegetation cover on cover-management factor of RUSLE, were also considered. Three runoff plot groups covered by sparse young trees, native shrubs and dense tussock, respectively, were established in the Yangjuangou catchment of Loess Plateau. Rainfall, runoff and soil loss were monitored during the rainy season in 2008–2011 to test the applicability of the proposed approach. The original SCS-CN model significantly underestimated the event runoff, especially for the rainfall events that have large 5-day antecedent precipitation, whereas the modified SCS-CN model was accurate in predicting event runoff with Nash-Sutcliffe model efficiency (EF) over 0.85. The original RUSLE model overestimated low values of measured soil loss and underpredicted the high values with EF values only about 0.30. In contrast, the prediction accuracy of the modified RUSLE model improved with EF values being over 0.70. Our results indicated that the AMC should be explicitly incorporated in runoff production, and direct consideration of runoff should be included when predicting event soil loss. Coupling the modified SCS-CN and RUSLE models appeared to be appropriate for evaluating hydrological effects of restoring vegetation in the Loess Plateau. The main advantages, limitations and future study scopes of the proposed models were also discussed.


Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1335 ◽  
Author(s):  
Wenhai Shi ◽  
Ni Wang

Soil Conservation Service Curve Number (SCS-CN) is a popular surface runoff prediction method because it is simple in principle, convenient in application, and easy to accept. However, the method still has several limitations, such as lack of a land slope factor, discounting the storm duration, and the absence of guidance on antecedent moisture conditions. In this study, an equation was developed to improve the SCS-CN method by combining the CN value with the tabulated CN2 value and three introduced factors (slope gradient, soil moisture, and storm duration). The proposed method was tested for calibration and validation with a dataset from three runoff plots in a watershed of the Loess Plateau. The results showed the model efficiencies of the proposed method were improved to 80.58% and 80.44% during the calibration and validation period, respectively, which was better than the standard SCS-CN and the other two modified SCS-CN methods where only a single factor of soil moisture or slope gradient was considered, respectively. Using the parameters calibrated and validated by dataset of the initial three runoff plots, the proposed method was then applied to runoff estimation of the remaining three runoff plots in another watershed. The proposed method reduced the root-mean-square error between the observed and estimated runoff values from 5.53 to 2.01 mm. Furthermore, the parameters of soil moisture (b1 and b2) is the most sensitive, followed by parameters in storm duration (c) and slope equations (a1 and a2), and the least sensitive parameter is the initial abstraction ratio λ on the basis of the proposed method sensitivity analysis. Conclusions can be drawn from the above results that the proposed method incorporating the three factors in the SCS method may estimate runoff more accurately in the Loess Plateau of China.


Sign in / Sign up

Export Citation Format

Share Document