A data mining approach to financial time series modelling and forecasting

2001 ◽  
Vol 10 (4) ◽  
pp. 225-239 ◽  
Author(s):  
Zoran Vojinovic ◽  
Vojislav Kecman ◽  
Rainer Seidel
2020 ◽  
Vol 12 (6) ◽  
pp. 21-32
Author(s):  
Muhammad Zulqarnain ◽  
◽  
Rozaida Ghazali ◽  
Muhammad Ghulam Ghouse ◽  
Yana Mazwin Mohmad Hassim ◽  
...  

Financial time-series prediction has been long and the most challenging issues in financial market analysis. The deep neural networks is one of the excellent data mining approach has received great attention by researchers in several areas of time-series prediction since last 10 years. “Convolutional neural network (CNN) and recurrent neural network (RNN) models have become the mainstream methods for financial predictions. In this paper, we proposed to combine architectures, which exploit the advantages of CNN and RNN simultaneously, for the prediction of trading signals. Our model is essentially presented to financial time series predicting signals through a CNN layer, and directly fed into a gated recurrent unit (GRU) layer to capture long-term signals dependencies. GRU model perform better in sequential learning tasks and solve the vanishing gradients and exploding issue in standard RNNs. We evaluate our model on three datasets for stock indexes of the Hang Seng Indexes (HSI), the Deutscher Aktienindex (DAX) and the S&P 500 Index range 2008 to 2016, and associate the GRU-CNN based approaches with the existing deep learning models. Experimental results present that the proposed GRU-CNN model obtained the best prediction accuracy 56.2% on HIS dataset, 56.1% on DAX dataset and 56.3% on S&P500 dataset respectively.


2017 ◽  
Vol 14 (3) ◽  
pp. 367-391 ◽  
Author(s):  
Alexandros Agapitos ◽  
Anthony Brabazon ◽  
Michael O’Neill

2019 ◽  
Vol 5 (2(49)) ◽  
pp. 50-55
Author(s):  
Mykola Kushnir ◽  
Kateryna Tokarieva

2020 ◽  
Vol 39 (4) ◽  
pp. 5339-5345
Author(s):  
Han He ◽  
Yuanyuan Hong ◽  
Weiwei Liu ◽  
Sung-A Kim

At present, KDD research covers many aspects, and has achieved good results in the discovery of time series rules, association rules, classification rules and clustering rules. KDD has also been widely used in practical work such as OLAP and DW. Also, with the rapid development of network technology, KDD research based on WEB has been paid more and more attention. The main research content of this paper is to analyze and mine the time series data, obtain the inherent regularity, and use it in the application of financial time series transactions. In the financial field, there is a lot of data. Because of the huge amount of data, it is difficult for traditional processing methods to find the knowledge contained in it. New knowledge and new technology are urgently needed to solve this problem. The application of KDD technology in the financial field mainly focuses on customer relationship analysis and management, and the mining of transaction data is rare. The actual work requires a tool to analyze the transaction data and find its inherent regularity, to judge the nature and development trend of the transaction. Therefore, this paper studies the application of KDD in financial time series data mining, explores an appropriate pattern mining method, and designs an experimental system which includes mining trading patterns, analyzing the nature of transactions and predicting the development trend of transactions, to promote the application of KDD in the financial field.


2020 ◽  
Vol 16 (2) ◽  
pp. 64-80
Author(s):  
Shiya Wang

With the continuous development of financial information technology, traditional data mining technology cannot effectively deal with large-scale user data sets, nor is it suitable to actively discover various potential rules from a large number of data and predict future trends. Time series are the specific values of statistical indicators on different time scales. Data sequences arranged in chronological order exist in our lives and scientific research. Financial time series is a special kind of time series, which has the commonness of time series, chaos, non-stationary and non-linear characteristics. Financial time series analysis judges the future trend of change through the analysis of historical time series. Through in-depth analysis of massive financial data, mining its potential valuable information, it can be used for individual or financial institutions in various financial activities, such as investment decision-making, market forecasting, risk management, customer requirement analysis provides scientific evidence.


Author(s):  
Philip L.H. Yu ◽  
Edmond H.C. Wu ◽  
W.K. Li

As a data mining technique, independent component analysis (ICA) is used to separate mixed data signals into statistically independent sources. In this chapter, we apply ICA for modeling multivariate volatility of financial asset returns which is a useful tool in portfolio selection and risk management. In the finance literature, the generalized autoregressive conditional heteroscedasticity (GARCH) model and its variants such as EGARCH and GJR-GARCH models have become popular standard tools to model the volatility processes of financial time series. Although univariate GARCH models are successful in modeling volatilities of financial time series, the problem of modeling multivariate time series has always been challenging. Recently, Wu, Yu, & Li (2006) suggested using independent component analysis (ICA) to decompose multivariate time series into statistically independent time series components and then separately modeled the independent components by univariate GARCH models. In this chapter, we extend this class of ICA-GARCH models to allow more flexible univariate GARCH-type models. We also apply the proposed models to compute the value-at-risk (VaR) for risk management applications. Backtesting and out-of-sample tests suggest that the ICA-GARCH models have a clear cut advantage over some other approaches in value-at-risk estimation.


Sign in / Sign up

Export Citation Format

Share Document