scholarly journals Amino acid sequence of the murine Mac-1 alpha chain reveals homology with the integrin family and an additional domain related to von Willebrand factor.

1988 ◽  
Vol 7 (5) ◽  
pp. 1371-1378 ◽  
Author(s):  
R. Pytela
Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1654-1661 ◽  
Author(s):  
Helena E. Gerritsen ◽  
Rodolfo Robles ◽  
Bernhard Lämmle ◽  
Miha Furlan

Abstract von Willebrand factor–cleaving protease (vWF-cp) is responsible for the continuous degradation of plasma vWF multimers released from endothelial cells. It is deficient in patients with thrombotic thrombocytopenic purpura, who show unusually large vWF multimers in plasma. Purified vWF-cp may be useful for replacement in these patients, who are now treated by plasma therapy. In this study, vWF-cp was purified from normal human plasma by affinity chromatography on the IgG fraction from a patient with autoantibodies to vWF-cp and by a series of further chromatographic procedures, including affinity chromatography on Protein G, Ig-TheraSorb, lentil lectin, and heparin. Four single-chain protein bands, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, showed Mr of 150, 140, 130, and 110 kd and were found to share the same N-terminal amino acid sequence, suggesting that they were derived from the same polypeptide chain that had been partially degraded at the carboxy-terminal end. A hydrophobic sequence (Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val-Gly) of the first 15 residues was established. The protease migrates in gel filtration as a high-molecular-weight complex with clusterin, a 70-kd protein with chaperonelike activity. vWF-cp bound to clusterin is dissociated by the use of concentrated chaotropic salts. vWF-cp in normal human plasma or serum is not associated with clusterin, suggesting that the observed complex is due to vWF-cp denaturation during the purification procedure. Activity of vWF-cp is unusually stable during incubation at 37°C; its in vitro half-life in citrated human plasma, heparin plasma, or serum is longer than 1 week. There was even a temporary increase in protease activity during the first 3 days of incubation.


Biochemistry ◽  
1986 ◽  
Vol 25 (11) ◽  
pp. 3171-3184 ◽  
Author(s):  
Koiti Titani ◽  
Santosh Kumar ◽  
Koji Takio ◽  
Lowell H. Ericsson ◽  
Roger D. Wade ◽  
...  

1993 ◽  
Vol 69 (03) ◽  
pp. 240-246 ◽  
Author(s):  
Midori Shima ◽  
Dorothea Scandella ◽  
Akira Yoshioka ◽  
Hiroaki Nakai ◽  
Ichiro Tanaka ◽  
...  

SummaryA neutralizing monoclonal antibody, NMC-VIII/5, recognizing the 72 kDa thrombin-proteolytic fragment of factor VIII light chain was obtained. Binding of the antibody to immobilized factor VIII (FVIII) was completely blocked by a light chain-specific human alloantibody, TK, which inhibits FVIII activity. Immunoblotting analysis with a panel of recombinant protein fragments of the C2 domain deleted from the amino-terminal or the carboxy-terminal ends demonstrated binding of NMC-VIII/5 to an epitope located between amino acid residues 2170 and 2327. On the other hand, the epitope of the inhibitor alloantibody, TK, was localized to 64 amino acid residues from 2248 to 2312 using the same recombinant fragments. NMC-VIII/5 and TK inhibited FVIII binding to immobilized von Willebrand factor (vWF). The IC50 of NMC-VIII/5 for the inhibition of binding to vWF was 0.23 μg/ml for IgG and 0.2 μg/ml for F(ab)'2. This concentration was 100-fold lower than that of a monoclonal antibody NMC-VIII/10 which recognizes the amino acid residues 1675 to 1684 within the amino-terminal portion of the light chain. The IC50 of TK was 11 μg/ml by IgG and 6.3 μg/ml by F(ab)'2. Furthermore, NMC-VIII/5 and TK also inhibited FVIII binding to immobilized phosphatidylserine. The IC50 for inhibition of phospholipid binding of NMC-VIII/5 and TK (anti-FVIII inhibitor titer of 300 Bethesda units/mg of IgG) was 10 μg/ml.


Blood ◽  
1987 ◽  
Vol 70 (4) ◽  
pp. 985-988 ◽  
Author(s):  
Y Fujimura ◽  
LZ Holland ◽  
ZM Ruggeri ◽  
TS Zimmerman

Abstract Botrocetin, a component of Bothrops jararaca venom, induces von Willebrand factor (vWF)-dependent platelet agglutination and has been proposed as an alternative agent to ristocetin for evaluating vWF function. However, important differences between the vWF-platelet interactions induced by these two agents have suggested that different regions of vWF and the platelet may be involved in the interactions induced by the two agonists. We have recently demonstrated that binding of vWF to the platelet glycoprotein (GP) Ib receptor, either induced by ristocetin or as occurs spontaneously with asialo-vWF or vWF from IIb von Willebrand disease, is mediated by a domain residing on a 52/48- kilodalton (kD) tryptic fragment of vWF. This fragment extends from amino acid residue Val (449) to Lys (728). We have now found that this 52/48-kD fragment blocks botrocetin-induced binding of vWF to platelets and completely inhibits botrocetin-induced platelet agglutination. These results provide evidence that the vWF domain-mediating, botrocetin-induced platelet agglutination lies within the region delimited by this fragment and is therefore close to or identical with that which mediates ristocetin-induced binding and spontaneous binding of vWF to platelet GPIb. Anti-GPIb monoclonal antibodies also blocked agglutination, which showed that botrocetin, like ristocetin, induces binding of vWF to the GPIb receptor.


Blood ◽  
1991 ◽  
Vol 77 (9) ◽  
pp. 1929-1936 ◽  
Author(s):  
JW Precup ◽  
BC Kline ◽  
DN Fass

Abstract To study the interaction of human factor VIII (FVIII) with its various ligands, select regions of cDNA encoding FVIII light chain were cloned into the plasmid expression vector pET3B to overproduce FVIII protein fragments in the bacterium Escherichia coli. Partially purified FVIII protein fragments were used to produce monoclonal antibodies. One monoclonal antibody, 60-B, bound both an FVIII protein fragment (amino acid residues 1563 through 1909) and recombinant human FVIII, but not porcine FVIII. This antibody prevented FVIII-vWF binding and acted as an inhibitor in both the activated partial thromboplastin time (APTT) assay and a chromogenic substrate assay that measured factor Xa generation. The ability of the antibody to inhibit FVIII activity was diminished in a dose-dependent fashion by von Willebrand factor. This anti-FVIII monoclonal antibody bound to a synthetic peptide, K E D F D I Y D E D E, equivalent to FVIII amino acid residues 1674 through 1684. The 60-B antibody did not react with a peptide in which the aspartic acid residue at 1681 (underlined) was changed to a glycine, which is the amino acid present at this position in porcine FVIII. Gel electrophoretic analysis of thrombin cleavage patterns of human FVIII showed that the 60-B antibody prevented thrombin cleavage at light chain residue 1689. The coagulant inhibitory activity of the 60-B antibody may be due, in part, to the prevention of thrombin activation of FVIII light chain.


Sign in / Sign up

Export Citation Format

Share Document