Isolation, Characterization and Amino Acid Sequence of Echicetin β Subunit, a Specific Inhibitor of von Willebrand Factor and Thrombin Interaction with Glycoprotein Ib

1994 ◽  
Vol 205 (1) ◽  
pp. 68-72 ◽  
Author(s):  
M.L. Peng ◽  
J.C. Holt ◽  
S. Niewiarowski
1990 ◽  
Vol 63 (01) ◽  
pp. 122-126 ◽  
Author(s):  
Yashuiro Katagiri ◽  
Yaeko Hayashi ◽  
Kazuo Yamamoto ◽  
Kenjiro Tanoue ◽  
Goro kosaki ◽  
...  

SummaryPlatelet membrane glycoprotein Ib (GPIb) functions as receptors for thrombin and von Willebrand factor (vWF) in the presence of ristocetin. To precisely locate the domains on GPIb interacting with vWF and thrombin, we prepared several peptides that have amino acid sequences analogous to that ol the GPIb α-chain and examined their effects on ristocetin-induced (vWFdependent) and thrombin-induced platelet aggregations. A peptide extending from residues Asp235 to Lys262 showed the strongest inhibitory effect on ristocetin-induced platelet agglutination, and a group of overlapping peptides composed of 24-28 amino acid residues representing sequences extending from Phe216 to Asp274 was found to inhibit platelet aggregation induced by thrombin. Other peptides did not inhibit platelet aggregations. Moreover the binding to platelets of the monoclonal anti-GPIb antibody (TM60) which had been shown to inhibit both ristocetin- and thrombin-induced platelet aggregations was strongly inhibited by a peptide extending from Asp249 to Asp274. These data demonstrate that the vWF-hinding domain exists in a small region between residues Asp235 and Lys262; the thrombin-interacting domain, in contrast, is located between residues Phe216 and Ala274, with a possible center of interaction in the sequence from Phe216 to Thr240 on the GPIb α-chain, and thrombin binding requires a relatively strict conformation in this domain.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1572-1581 ◽  
Author(s):  
Cheryl A. Hillery ◽  
David J. Mancuso ◽  
J. Evan Sadler ◽  
Jay W. Ponder ◽  
Mary A. Jozwiak ◽  
...  

Abstractvon Willebrand disease (vWD) is a common, autosomally inherited, bleeding disorder caused by quantitative and/or qualitative deficiency of von Willebrand factor (vWF). We describe two families with a variant form of vWD where affected members of both families have borderline or low vWF antigen levels, normal vWF multimer patterns, disproportionately low ristocetin cofactor activity, and significant bleeding symptoms. Whereas ristocetin-induced binding of plasma vWF from affected members of both families to fixed platelets was reduced, botrocetin-induced platelet binding was normal. The sequencing of genomic DNA identified unique missense mutations in each family in the vWF exon 28. In Family A, a missense mutation at nucleotide 4105T → A resulted in a Phe606Ile amino acid substitution (F606I) and in Family B, a missense mutation at nucleotide 4273A → T resulted in an Ile662Phe amino acid substitution (I662F). Both mutations are within the large disulfide loop between Cys509 and Cys695 in the A1 domain that mediates vWF interaction with platelet glycoprotein Ib. Expression of recombinant vWF containing either F606I or I662F mutations resulted in mutant recombinant vWF with decreased ristocetin-induced platelet binding, but normal multimer structure, botrocetin-induced platelet binding, collagen binding, and binding to the conformation-sensitive monoclonal antibody, AvW-3. Both mutations are phenotypically distinct from the previously reported variant type 2MMilwaukee-1 because of the presence of normal botrocetin-induced platelet binding, collagen binding, and AvW-3 binding, as well as the greater frequency and intensity of clinical bleeding. When the reported type 2M mutations are mapped on the predicted three-dimensional structure of the A1 loop of vWF, the mutations cluster in one region that is distinct from the region in which the type 2B mutations cluster.


Blood ◽  
2001 ◽  
Vol 98 (6) ◽  
pp. 1654-1661 ◽  
Author(s):  
Helena E. Gerritsen ◽  
Rodolfo Robles ◽  
Bernhard Lämmle ◽  
Miha Furlan

Abstract von Willebrand factor–cleaving protease (vWF-cp) is responsible for the continuous degradation of plasma vWF multimers released from endothelial cells. It is deficient in patients with thrombotic thrombocytopenic purpura, who show unusually large vWF multimers in plasma. Purified vWF-cp may be useful for replacement in these patients, who are now treated by plasma therapy. In this study, vWF-cp was purified from normal human plasma by affinity chromatography on the IgG fraction from a patient with autoantibodies to vWF-cp and by a series of further chromatographic procedures, including affinity chromatography on Protein G, Ig-TheraSorb, lentil lectin, and heparin. Four single-chain protein bands, separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis under nonreducing conditions, showed Mr of 150, 140, 130, and 110 kd and were found to share the same N-terminal amino acid sequence, suggesting that they were derived from the same polypeptide chain that had been partially degraded at the carboxy-terminal end. A hydrophobic sequence (Ala-Ala-Gly-Gly-Ile-Leu-His-Leu-Glu-Leu-Leu-Val-Ala-Val-Gly) of the first 15 residues was established. The protease migrates in gel filtration as a high-molecular-weight complex with clusterin, a 70-kd protein with chaperonelike activity. vWF-cp bound to clusterin is dissociated by the use of concentrated chaotropic salts. vWF-cp in normal human plasma or serum is not associated with clusterin, suggesting that the observed complex is due to vWF-cp denaturation during the purification procedure. Activity of vWF-cp is unusually stable during incubation at 37°C; its in vitro half-life in citrated human plasma, heparin plasma, or serum is longer than 1 week. There was even a temporary increase in protease activity during the first 3 days of incubation.


Blood ◽  
1998 ◽  
Vol 91 (5) ◽  
pp. 1572-1581 ◽  
Author(s):  
Cheryl A. Hillery ◽  
David J. Mancuso ◽  
J. Evan Sadler ◽  
Jay W. Ponder ◽  
Mary A. Jozwiak ◽  
...  

von Willebrand disease (vWD) is a common, autosomally inherited, bleeding disorder caused by quantitative and/or qualitative deficiency of von Willebrand factor (vWF). We describe two families with a variant form of vWD where affected members of both families have borderline or low vWF antigen levels, normal vWF multimer patterns, disproportionately low ristocetin cofactor activity, and significant bleeding symptoms. Whereas ristocetin-induced binding of plasma vWF from affected members of both families to fixed platelets was reduced, botrocetin-induced platelet binding was normal. The sequencing of genomic DNA identified unique missense mutations in each family in the vWF exon 28. In Family A, a missense mutation at nucleotide 4105T → A resulted in a Phe606Ile amino acid substitution (F606I) and in Family B, a missense mutation at nucleotide 4273A → T resulted in an Ile662Phe amino acid substitution (I662F). Both mutations are within the large disulfide loop between Cys509 and Cys695 in the A1 domain that mediates vWF interaction with platelet glycoprotein Ib. Expression of recombinant vWF containing either F606I or I662F mutations resulted in mutant recombinant vWF with decreased ristocetin-induced platelet binding, but normal multimer structure, botrocetin-induced platelet binding, collagen binding, and binding to the conformation-sensitive monoclonal antibody, AvW-3. Both mutations are phenotypically distinct from the previously reported variant type 2MMilwaukee-1 because of the presence of normal botrocetin-induced platelet binding, collagen binding, and AvW-3 binding, as well as the greater frequency and intensity of clinical bleeding. When the reported type 2M mutations are mapped on the predicted three-dimensional structure of the A1 loop of vWF, the mutations cluster in one region that is distinct from the region in which the type 2B mutations cluster.


Sign in / Sign up

Export Citation Format

Share Document