protein fragments
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 83)

H-INDEX

48
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Andrew Savinov ◽  
Andres Fernandez ◽  
Stanley Fields

Massively-parallel measurements of dominant negative inhibition by protein fragments have been used to map protein interaction sites and discover peptide inhibitors. However, the underlying principles governing fragment-based inhibition have thus far remained unclear. Here, we adapt a high-throughput inhibitory fragment assay for use in Escherichia coli, applying it to a set of ten essential proteins. This approach yielded single amino acid resolution maps of inhibitory activity, with peaks localized to functionally important interaction sites, including oligomerization interfaces and folding contacts. Leveraging these data, we perform a systematic analysis to uncover principles of fragment-based inhibition. We determine a robust negative correlation between susceptibility to inhibition and cellular protein concentration, demonstrating that inhibitory fragments likely act primarily by titrating native protein interactions. We also characterize a series of trade-offs related to fragment length, showing that shorter peptides allow higher-resolution mapping but suffer from lower inhibitory activity. We employ an unsupervised statistical analysis to show that the inhibitory activities of protein fragments are largely driven not by generic properties such as charge, hydrophobicity, and secondary structure, but by the more specific characteristics of their bespoke macromolecular interactions. AlphaFold computational modeling of peptide complexes with one protein shows that the inhibitory activity of peptides is associated with their predicted ability to form native-like interactions. Overall, this work demonstrates fundamental characteristics of inhibitory protein fragment function and provides a foundation for understanding and controlling protein interactions in vivo.


2022 ◽  
pp. 566-593
Author(s):  
Fatma Esra Güneş

Bioactive peptides (BP) are specific protein fragments that can affect biological processes or substrates that have a positive impact on functions and conditions on body health. Plant and animal sources that contain physiologically active food proteins, native or processed, are rich sources of bioactive peptides. Bioactive peptides derived from food proteins have been demostrated to have variety of beneficial effects, such as anti-inflammatory and antioxidant properties. BP are accepted the new generation of biologically active regulators; they can prevent oxidation and microbial degradation in foods and furthermore improve quality of life by treating various diseases and disorders. The present review highlights the recent findings on the roles of various food-derived bioactive peptides in inflammation and oxidative stress and discuss the potential benefits and limitations of using these compounds against the burden of chronic diseases.


2021 ◽  
Vol 22 (24) ◽  
pp. 13210
Author(s):  
Danuta Witkowska ◽  
Agnieszka Szebesczyk ◽  
Joanna Wątły ◽  
Michał Braczkowski ◽  
Magdalena Rowińska-Żyrek

Combined potentiometric titration and isothermal titration calorimetry (ITC) methods were used to study the interactions of nickel(II) ions with the N-terminal fragments and histidine-rich fragments of Hpn-like protein from two Helicobacter pylori strains (11637 and 26695). The ITC measurements were performed at various temperatures and buffers in order to extract proton-independent reaction enthalpies of nickel binding to each of the studied protein fragments. We bring up the problem of ITC results of nickel binding to the Hpn-like protein being not always compatible with those from potentiometry and MS regarding the stoichiometry and affinity. The roles of the ATCUN motif and multiple His and Gln residues in Ni(II) binding are discussed. The results provided the possibility to compare the Ni(II) binding properties between N-terminal and histidine-rich part of Hpn-like protein and between N-terminal parts of two Hpn-like strains, which differ mainly in the number of glutamine residues.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Morgane Boone ◽  
Pathmanaban Ramasamy ◽  
Jasper Zuallaert ◽  
Robbin Bouwmeester ◽  
Berre Van Moer ◽  
...  

AbstractWhile transcriptome- and proteome-wide technologies to assess processes in protein biogenesis are now widely available, we still lack global approaches to assay post-ribosomal biogenesis events, in particular those occurring in the eukaryotic secretory system. We here develop a method, SECRiFY, to simultaneously assess the secretability of >105 protein fragments by two yeast species, S. cerevisiae and P. pastoris, using custom fragment libraries, surface display and a sequencing-based readout. Screening human proteome fragments with a median size of 50–100 amino acids, we generate datasets that enable datamining into protein features underlying secretability, revealing a striking role for intrinsic disorder and chain flexibility. The SECRiFY methodology generates sufficient amounts of annotated data for advanced machine learning methods to deduce secretability patterns. The finding that secretability is indeed a learnable feature of protein sequences provides a solid base for application-focused studies.


Author(s):  
David Camerini ◽  
Arlo Z. Randall ◽  
Krista Trappl-Kimmons ◽  
Amit Oberai ◽  
Christopher Hung ◽  
...  

With novel mutant SARS-CoV-2 variants of concern on the rise, knowledge of immune specificities against SARS-CoV-2 proteins is increasingly important for understanding the impact of structural changes in antibody-reactive protein epitopes on naturally acquired and vaccine-induced immunity, as well as broader topics of cross-reactivity and viral evolution. A multi-coronavirus protein microarray used to map the binding of COVID-19 patient antibodies to SARS-CoV-2 proteins and protein fragments as well as to the proteins of four other coronaviruses that infect humans has shown specific regions of SARS-CoV-2 proteins that are highly reactive with patient antibodies and revealed cross-reactivity of these antibodies with other human coronaviruses.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2220
Author(s):  
Ramachandran Chelliah ◽  
Shuai Wei ◽  
Eric Banan-Mwine Daliri ◽  
Fazle Elahi ◽  
Su-Jung Yeon ◽  
...  

Bioactive peptides are present in most soy products and eggs and have essential protective functions. Infection is a core feature of innate immunity that affects blood pressure and the glucose level, and ageing can be delayed by killing senescent cells. Food also encrypts bioactive peptides and protein sequences produced through proteolysis or food processing. Unique food protein fragments can improve human health and avoid metabolic diseases, inflammation, hypertension, obesity, and diabetes mellitus. This review focuses on drug targets and fundamental mechanisms of bioactive peptides on metabolic syndromes, namely obesity and type 2 diabetes, to provide new ideas and knowledge on the ability of bioactive peptide to control metabolic syndromes.


2021 ◽  
Author(s):  
Logan Richards ◽  
Maria D Flores ◽  
Claudia Millan ◽  
Chih-Te Zee ◽  
Calina Glynn ◽  
...  

Microcrystal electron diffraction (MicroED) is transforming the visualization of molecules from nanocrystals, rendering their three-dimensional atomic structures from previously unamenable samples. Peptidic structures determined by MicroED include naturally occurring peptides, synthetic protein fragments and peptide-based natural products. However, as a diffraction method, MicroED is beholden to the phase problem, and its de novo determination of structures remains a challenge. ARCIMBOLDO, an automated, fragment-based approach to structure determination. It eliminates the need for atomic resolution, instead enforcing stereochemical constraints through libraries of small model fragments, and discerning congruent motifs in solution space to ensure validation. This approach expands the reach of MicroED to presently inaccessible peptidic structures including segments of human amyloids, and yeast and mammalian prions, and portends a more general phasing solution while limiting model bias for a wider set of chemical structures.


2021 ◽  
Author(s):  
Elif Işılay Ünlü ◽  
Ahmet Çınar

The fate of transgenic DNA (tDNA) and protein of feeds from Genetically Modified organisms (GMOs) in animals has been an important topic since their commercialization in 1996. Several studies have investigated about risks of horizontal gene transfer (HGT) of tDNA and proteins to bacteria or animal cells/tissues, however, the reported data is at times controversial. Earlier reports showed that tDNA fragments or protein derived from GM plants have not been detected in tissues, fluids, or edible products of farm animals. Other researchers have come out to demonstrate that there is the possibility of small fragments leaking out into the animal tissues, fluids and organs. This motivated us to update our knowledge about these concerns. Therefore, this review aimed at assessing the likely transfer and accumulation of tDNA/ proteins from transgenic feeds to animal (ruminants and non-ruminants) samples through evaluating the available experimental scientific published studies. This study has found out that the tDNA or protein is not completely degraded during feed processing and digestion in the Gastro-Intestinal Tract (GIT). In large ruminants (Cattle), tDNA fragments/protein have been detected in the GIT digesta, ruminal fluid and feces. In small ruminants (Goats), traces of tDNA/proteins have been detected in the GIT digesta, blood, milk, liver, kidney, heart and muscle. In pigs, they have been detected in blood, spleen, liver kidney and in the GIT digesta. In poultry, traces have been seen in blood, liver and GIT digesta but not in meat and Eggs. Regardless of some studies that have shown the transfer of tDNA/protein fragments to animal samples, we cannot base on these few studies to give a piece of general evidence about their transfer into tissues/fluids and organs of livestock animals. However, this study clearly shows possible transfer, hence intensive and authentic research on GM crops should be done before they are allowed for commercial use, studying issues like the fate of tDNA or proteins and the effect of feeding GM feeds to livestock.


2021 ◽  
Vol 8 ◽  
Author(s):  
Noelia Ferruz ◽  
Florian Michel ◽  
Francisco Lobos ◽  
Steffen Schmidt ◽  
Birte Höcker

Modern proteins have been shown to share evolutionary relationships via subdomain-sized fragments. The assembly of such fragments through duplication and recombination events led to the complex structures and functions we observe today. We previously implemented a pipeline that identified more than 1,000 of these fragments that are shared by different protein folds and developed a web interface to analyze and search for them. This resource named Fuzzle helps structural and evolutionary biologists to identify and analyze conserved parts of a protein but it also provides protein engineers with building blocks for example to design proteins by fragment combination. Here, we describe a new version of this web resource that was extended to include ligand information. This addition is a significant asset to the database since now protein fragments that bind specific ligands can be identified and analyzed. Often the mode of ligand binding is conserved in proteins thereby supporting a common evolutionary origin. The same can now be explored for subdomain-sized fragments within this database. This ligand binding information can also be used in protein engineering to graft binding pockets into other protein scaffolds or to transfer functional sites via recombination of a specific fragment. Fuzzle 2.0 is freely available at https://fuzzle.uni-bayreuth.de/2.0.


2021 ◽  
Vol 118 (33) ◽  
pp. e2102675118
Author(s):  
Marco Janoschke ◽  
Mirjam Zimmermann ◽  
Anna Brunauer ◽  
Raffael Humbel ◽  
Tina Junne ◽  
...  

The topology of most membrane proteins is defined by the successive integration of α-helical transmembrane domains at the Sec61 translocon. The translocon provides a pore for the transfer of polypeptide segments across the membrane while giving them lateral access to the lipid. For each polypeptide segment of ∼20 residues, the combined hydrophobicities of its constituent amino acids were previously shown to define the extent of membrane integration. Here, we discovered that different sequences preceding a potential transmembrane domain substantially affect its hydrophobicity requirement for integration. Rapidly folding domains, sequences that are intrinsically disordered or very short or capable of binding chaperones with high affinity, allow for efficient transmembrane integration with low-hydrophobicity thresholds for both orientations in the membrane. In contrast, long protein fragments, folding-deficient mutant domains, and artificial sequences not binding chaperones interfered with membrane integration, requiring higher hydrophobicity. We propose that the latter sequences, as they compact on their hydrophobic residues, partially folded but unable to reach a native state, expose hydrophobic surfaces that compete with the translocon for the emerging transmembrane segment, reducing integration efficiency. The results suggest that rapid folding or strong chaperone binding is required for efficient transmembrane integration.


Sign in / Sign up

Export Citation Format

Share Document