Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells

2007 ◽  
Vol 101 (4) ◽  
pp. 1000-1010 ◽  
Author(s):  
Okhee Han ◽  
Eun-Young Kim
1990 ◽  
Vol 97 (2) ◽  
pp. 385-394
Author(s):  
M. Fujita ◽  
F. Reinhart ◽  
M. Neutra

Absorptive cells of the intestinal epithelium endocytose proteins from both apical and basolateral membrane domains. In absorptive cells of suckling rat ileum, luminal protein tracers first enter an apical tubulovesicular endosomal system, then enter larger apical endosomal vesicles and multivesicular bodies (MVB), and finally are delivered to a giant supranuclear lysosomal vacuole. To determine whether proteins endocytosed from the basolateral domain in vivo enter the same endosomal or lysosomal compartments as those taken up from the apical side, we simultaneously applied cationized ferritin (CF) apically (by intra-luminal injection) and horseradish peroxidase (HRP) basally (by intravenous injection), and examined absorptive cells after 3 min to 60 min using light, electron and fluorescence microscopy. At early times, CF and HRP entered separate endosomal compartments at apical and basolateral poles. At no time did HRP enter the apical tubulovesicular system, and CF never entered early basolateral endosomes. After 15 min, however, both tracers appeared together in large late endosomes and MVB located apically, above the giant vacuole. From 15 to 60 min both tracers accumulated in the giant vacuole. Membranes of some apical late endosomes, all apical MVB, the giant vacuole, and occasional sub-nuclear vesicles contained immunoreactive Igp120, a glycoprotein specific to late compartments of the endosome-lysosome system. These results show that highly polarized intestinal epithelial cells have separate apical and basolateral early endosomal compartments, presumably to maintain distinct membrane domains while allowing endocytosis and recycling of membrane from both surfaces. Apical and basolateral endocytic pathways, and presumably vesicles delivering hydrolytic enzymes and lysosomal membrane components, converge at the apical late endosome.


2005 ◽  
Vol 289 (1) ◽  
pp. L14-L23 ◽  
Author(s):  
Funmei Yang ◽  
David J. Haile ◽  
Xinchao Wang ◽  
Lisa A. Dailey ◽  
Jacqueline G. Stonehuerner ◽  
...  

Ferroportin 1 (FPN1; aka MTP1, IREG1, and SLC40A1), which was originally identified as a basolateral iron transporter crucial for nutritional iron absorption in the intestine, is expressed in airway epithelia and upregulated when these cells are exposed to iron. Using immunofluorescence labeling and confocal microscopic imaging techniques, we demonstrate that in human and rodent lungs, FPN1 localizes subcellularly to the apical but not basolateral membrane of the airway epithelial cells. The role of airway epithelial cells in iron mobilization in the lung was studied in an in vitro model of the polarized airway epithelium. Normal human bronchial epithelial cells, grown on membrane supports until differentiated, were exposed to iron, and the efficiency and direction of iron transportation were studied. We found that these cells can efficiently take up iron across the apical but not basolateral surface in a concentration-dependent manner. Most of the iron taken up by the cells is then released into the medium within 8 h in the form of less reactive protein-bound complexes including ferritin and transferrin. Interestingly, iron release also occurred across the apical but not basolateral membrane. Our findings indicate that FPN1, depending on its subcellular location, could have distinct functions in iron homeostasis in different cells and tissues. Although it is responsible for exporting nutrient iron from enterocytes to the circulation in the intestine, it could play a role in iron detoxification in airway epithelial cells in the lung.


2021 ◽  
Author(s):  
Fernando Sotillo ◽  
Judith Giroud-Gerbetant ◽  
Jorge Couso ◽  
Rafael Artuch ◽  
Antonio Zorzano ◽  
...  

Slc7a7 encodes for y+LAT1, a transporter of cationic amino acid across the basolateral membrane of epithelial cells. Mutations in SLC7A7 gene give rise to Lysinuric Protein Intolerance (LPI), a rare autosomal recessive disease with wide variability of complications. Intriguingly, y+LAT1 is also involved in arginine transport in non polarized cells such as macrophages. Here we report that complete inducible Slc7a7 ablation in mouse compromises systemic arginine availability that alters proper erythropoiesis and that dysfunctional RBC generation leads to increased erythrophagocytosis, iron overload and an altered iron metabolism by macrophages. Herein, uncovering a novel mechanism that links amino acid metabolism to erythropoiesis and iron metabolism. Mechanistically, the iron exporter ferroportin-1 expression was compromised by increased plasma hepcidin causing macrophage iron accumulation. Strikingly, lysozyme M-cell-specific knockout mice failed to reproduce the total knockout alterations, while bone marrow transplantation experiments resulted in the resolution of macrophage iron overload but could not overcome erythropoietic defect. This study establishes a new crucial link between systemic arginine availability in erythropoiesis and iron homeostasis.


2009 ◽  
Vol 296 (1) ◽  
pp. G55-G65 ◽  
Author(s):  
Kwo-yih Yeh ◽  
Mary Yeh ◽  
Laura Mims ◽  
Jonathan Glass

Intestinal iron absorption involves proteins located in the brush border membrane (BBM), cytoplasm, and basolateral membrane (BLM) of duodenal enterocytes. Ferroportin 1 (FPN1) and hephaestin (Heph) are necessary for transport of iron out of enterocytes, but it is not known whether these two proteins interact during iron absorption. We first examined colocalization of the proteins by cotransfection of HEK293 cells with pDsRed-FPN1 with pEmGFP-Heph or with the COOH-terminal truncated pEmGFP-HephΔ43 or -HephΔ685 and found that FPN1 and Heph with or without the COOH terminus colocalized. In rat duodenal enterocytes, within 1 h of iron feeding prominent migration of FPN1 from the apical subterminal zone to the basal subnuclear zone of the BLM occurred and increased to at least 4 h after feeding. Heph exhibited a similar though less prominent migration after iron ingestion. Analysis using rat duodenal epithelial cell sheets demonstrated that 1) by velocity sedimentation ultracentrifugation, FPN1 and Heph occupied vesicles of different sizes prior to iron feeding and migrated to similar fractions 1 h after iron feeding; 2) by blue native/SDS-PAGE, FPN1, and Heph interacted to form two complexes, one containing dimeric FPN1 and intact Heph and the other consisting of monomeric FPN1 and a Heph fragment; and 3) by immunoprecipitation, anti-Heph or anti-FPN1 antiserum coimmunoprecipitated FPN1 and Heph. Thus the data indicate that FPN1 and Heph migrate and interact during iron feeding and suggest that dimeric FPN1 is associated with intact Heph.


2016 ◽  
Vol 291 (33) ◽  
pp. 17303-17318 ◽  
Author(s):  
Izumi Yanatori ◽  
Des R. Richardson ◽  
Kiyoshi Imada ◽  
Fumio Kishi

Ferroportin 1 (FPN1) is an iron export protein found in mammals. FPN1 is important for the export of iron across the basolateral membrane of absorptive enterocytes and across the plasma membrane of macrophages. The expression of FPN1 is regulated by hepcidin, which binds to FPN1 and then induces its degradation. Previously, we demonstrated that divalent metal transporter 1 (DMT1) interacts with the intracellular iron chaperone protein poly(rC)-binding protein 2 (PCBP2). Subsequently, PCBP2 receives iron from DMT1 and then disengages from the transporter. In this study, we investigated the function of PCBP2 in iron export. Mammalian genomes encode four PCBPs (i.e. PCBP1–4). Here, for the first time, we demonstrated using both yeast and mammalian cells that PCBP2, but not PCBP1, PCBP3, or PCBP4, binds with FPN1. Importantly, iron-loaded, but not iron-depleted, PCBP2 interacts with FPN1. The PCBP2-binding domain of FPN1 was identified in its C-terminal cytoplasmic region. The silencing of PCBP2 expression suppressed FPN1-dependent iron export from cells. These results suggest that FPN1 exports iron received from the iron chaperone PCBP2. Therefore, it was found that PCBP2 modulates cellular iron export, which is an important physiological process.


2010 ◽  
Vol 64 (4) ◽  
pp. 281-286 ◽  
Author(s):  
Manuel Muñoz ◽  
José Antonio García-Erce ◽  
Ángel Francisco Remacha

Iron functionsIron is an essential micronutrient, as it is required for satisfactory erythropoietic function, oxidative metabolism and cellular immune response.Iron physiologyAbsorption of dietary iron (1–2 mg/day) is tightly regulated and just balanced against iron loss because there are no active iron excretory mechanisms. Dietary iron is found in haem (10%) and non-haem (ionic, 90%) forms, and their absorption occurs at the apical surface of duodenal enterocytes via different mechanisms. Iron is exported by ferroportin 1 (the only putative iron exporter) across the basolateral membrane of the enterocyte into the circulation (absorbed iron), where it binds to transferrin and is transported to sites of use and storage. Transferrin-bound iron enters target cells—mainly erythroid cells, but also immune and hepatic cells—via receptor-mediated endocytosis. Senescent erythrocytes are phagocytosed by reticuloendothelial system macrophages, haem is metabolised by haem oxygenase, and the released iron is stored as ferritin. Iron will be later exported from macrophages to transferrin. This internal turnover of iron is essential to meet the requirements of erythropoiesis (20–30 mg/day). As transferrin becomes saturated in iron-overload states, excess iron is transported to the liver, the other main storage organ for iron, carrying the risk of free radical formation and tissue damage.Regulation of iron homoeostasisHepcidin, synthesised by hepatocytes in response to iron concentrations, inflammation, hypoxia and erythropoiesis, is the main iron-regulatory hormone. It binds ferroportin on enterocytes, macrophages and hepatocytes triggering its internalisation and lysosomal degradation. Inappropriate hepcidin secretion may lead to either iron deficiency or iron overload.


2001 ◽  
Vol 120 (5) ◽  
pp. A679-A679
Author(s):  
S TYAGI ◽  
R GILL ◽  
S SAKSENA ◽  
H SAID ◽  
P DUDEJA

Sign in / Sign up

Export Citation Format

Share Document