Investigation of the Functional Role of Ca2+in the Oxygen-Evolving Complex of Photosystem II: A pH-Dependence Study of the Substitution of Ca2+by Sr2+

2004 ◽  
Vol 51 (5B) ◽  
pp. 1221-1228 ◽  
Author(s):  
Cheng-I Lee ◽  
Gary W. Brudvig
Author(s):  
Naoki Mizusawa ◽  
Isamu Sakurai ◽  
Hisako Kubota ◽  
Hajime Wada

1995 ◽  
Vol 73 (5-6) ◽  
pp. 241-245 ◽  
Author(s):  
Abdur Rashid ◽  
Radovan Popovic

Diphenylcarbazide (DPC) is an efficient electron donor to the inactive oxygen-evolving complex of photosystem II (PSII). We investigated the role of manganese on the rate of electron donation from DPC to PSII in both Mn-depleted (Tris washed) and Mn-retaining (NaCl washed) PSII preparations. The rate of electron donation from DPC to PSII was significantly higher in Mn-depleted than in Mn-retaining preparations, indicating a negative role of native Mn complex on DPC electron donation. The apparent Km values for DPC were found to be 0.11 and 0.17 mM for Mn-depleted and Mn-retaining PSII preparations, respectively. This difference in the Km values also indicates an antagonistic effect of endogenous Mn cluster on electron donation from DPC, which was markedly inhibited by exogenous Mn2+. However, the magnitude of inhibition was greater in Mn-depleted than in Mn-retaining PSII preparations. This indicates a higher accessibility of DPC to PSII in the absence of native Mn complex. Our results suggest (i) that Mn, either endogenous or added, acts as an accessibility barrier for DPC to donate electrons to PSII and (ii) that the native Mn complex not only functions as an accumulator of oxidizing equivalents but may also protect PSII from exogenous reductants.Key words: photosystem II, extrinsic polypeptides, Mn complex, electron transport, diphenylcarbazide.


Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 371
Author(s):  
Koua

The Mn4CaO5 cluster site in the oxygen-evolving complex (OEC) of photosystem II (PSII) undergoes structural perturbations, such as those induced by Ca2+/Sr2+ exchanges or Ca/Mn removal. These changes have been known to induce long-range positive shifts (between +30 and +150 mV) in the redox potential of the primary quinone electron acceptor plastoquinone A (QA), which is located 40 Å from the OEC. To further investigate these effects, we reanalyzed the crystal structure of Sr-PSII resolved at 2.1 Å and compared it with the native Ca-PSII resolved at 1.9 Å. Here, we focus on the acceptor site and report the possible long-range interactions between the donor, Mn4Ca(Sr)O5 cluster, and acceptor sites.


Sign in / Sign up

Export Citation Format

Share Document