thylakoid lumen
Recently Published Documents


TOTAL DOCUMENTS

96
(FIVE YEARS 13)

H-INDEX

31
(FIVE YEARS 2)

2021 ◽  
Vol 22 (15) ◽  
pp. 8126
Author(s):  
Peter J. Gollan ◽  
Andrea Trotta ◽  
Azfar A. Bajwa ◽  
Ilaria Mancini ◽  
Eva-Mari Aro

The thylakoid lumen houses proteins that are vital for photosynthetic electron transport, including water-splitting at photosystem (PS) II and shuttling of electrons from cytochrome b6f to PSI. Other lumen proteins maintain photosynthetic activity through biogenesis and turnover of PSII complexes. Although all lumen proteins are soluble, these known details have highlighted interactions of some lumen proteins with thylakoid membranes or thylakoid-intrinsic proteins. Meanwhile, the functional details of most lumen proteins, as well as their distribution between the soluble and membrane-associated lumen fractions, remain unknown. The current study isolated the soluble free lumen (FL) and membrane-associated lumen (MAL) fractions from Arabidopsis thaliana, and used gel- and mass spectrometry-based proteomics methods to analyze the contents of each proteome. These results identified 60 lumenal proteins, and clearly distinguished the difference between the FL and MAL proteomes. The most abundant proteins in the FL fraction were involved in PSII assembly and repair, while the MAL proteome was enriched in proteins that support the oxygen-evolving complex (OEC). Novel proteins, including a new PsbP domain-containing isoform, as well as several novel post-translational modifications and N-termini, are reported, and bi-dimensional separation of the lumen proteome identified several protein oligomers in the thylakoid lumen.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alessandro Napoli ◽  
Federico Iacovelli ◽  
Claudia Fagliarone ◽  
Gianmarco Pascarella ◽  
Mattia Falconi ◽  
...  

A genome-wide investigation of the anhydrobiotic cyanobacterium Chroococcidiopsis sp. CCMEE 029 identified three genes coding superoxide dismutases (SODs) annotated as MnSODs (SodA2.1 and SodA2.2) and Cu/ZnSOD (SodC) as suggested by the presence of metal-binding motifs and conserved sequences. Structural bioinformatics analysis of the retrieved sequences yielded modeled MnSODs and Cu/ZnSOD structures that were fully compatible with their functional role. A signal-peptide bioinformatics prediction identified a Tat signal peptide at the N-terminus of the SodA2.1 that highlighted its transport across the thylakoid/cytoplasmic membranes and release in the periplasm/thylakoid lumen. Homologs of the Tat transport system were identified in Chroococcidiopsis sp. CCMEE 029, and the molecular docking simulation confirmed the interaction between the signal peptide of the SodA2.1 and the modeled TatC receptor, thus supporting the SodA2.1 translocation across the thylakoid/cytoplasmic membranes. No signal peptide was predicted for the MnSOD (SodA2.2) and Cu/ZnSOD, thus suggesting their occurrence as cytoplasmic proteins. No FeSOD homologs were identified in Chroococcidiopsis sp. CCMEE 029, a feature that might contribute to its desiccation tolerance since iron produces hydroxyl radical via the Fenton reaction. The overall-overexpression in response to desiccation of the three identified SOD-coding genes highlighted the role of SODs in the antioxidant enzymatic defense of this anhydrobiotic cyanobacterium. The periplasmic MnSOD protected the cell envelope against oxidative damage, the MnSOD localized in the thylakoid lumen scavengered superoxide anion radical produced during the photosynthesis, while the cytoplasmic MnSOD and Cu/ZnSOD reinforced the defense against reactive oxygen species generated at the onset of desiccation. Results contribute to decipher the desiccation-tolerance mechanisms of this cyanobacterium and allow the investigation of its oxidative stress response during future space experiments in low Earth orbit and beyond.


2021 ◽  
Vol 12 ◽  
Author(s):  
Adam Chin-Fatt ◽  
Rima Menassa

Chimeric fusion proteins comprising a single domain antibody (VHH) fused to a crystallizable fragment (Fc) of an immunoglobulin are modular glycoproteins that are becoming increasingly in demand because of their value as diagnostics, research reagents and passive immunization therapeutics. Because ER-associated degradation and misfolding may potentially be limiting factors in the oxidative folding of VHH-Fc fusion proteins in the ER, we sought to explore oxidative folding in an alternative sub-compartment, the chloroplast thylakoid lumen, and determine its viability in a molecular farming context. We developed a set of in-house expression vectors for transient transformation of Nicotiana benthamiana leaves that target a VHH-Fc to the thylakoid lumen via either secretory (Sec) or twin-arginine translocation (Tat) import pathways. Compared to stromal [6.63 ± 3.41 mg/kg fresh weight (FW)], cytoplasmic (undetectable) and Tat-import pathways (5.43 ± 2.41 mg/kg FW), the Sec-targeted VHH-Fc showed superior accumulation (30.56 ± 5.19 mg/kg FW), but was less than that of the ER (51.16 ± 9.11 mg/kg FW). Additionally, the introduction of a rationally designed de novo disulfide bond enhances in planta accumulation when introduced into the Sec-targeted Fc fusion protein from 50.24 ± 4.08 mg/kg FW to 110.90 ± 6.46 mg/kg FW. In vitro immunofluorescent labeling assays on VHH-Fc purified from Sec, Tat, and stromal pathways demonstrate that the antibody still retains VHH functionality in binding Escherichia coli O157:H7 and neutralizing its intimate adherence to human epithelial type 2 cells. These results overall provide a proof of concept that the oxidative folding environment of the thylakoid lumen may be a viable compartment for stably folding disulfide-containing recombinant VHH-Fc proteins.


Author(s):  
Sang Hoon Ma ◽  
Hyun Min Kim ◽  
Se Hee Park ◽  
Seo Young Park ◽  
Thanh Dat Mai ◽  
...  

Abstract Key message The thylakoid transit peptide of tobacco oxygen-evolving enhancer protein contains a minimal ten amino acid sequences for thylakoid lumen transports. This ten amino acids do not contain twin-arginine, which is required for typical chloroplast lumen translocation. Abstract Chloroplasts are intracellular organelles responsible for photosynthesis to produce organic carbon for all organisms. Numerous proteins must be transported from the cytosol to chloroplasts to support photosynthesis. This transport is facilitated by chloroplast transit peptides (TPs). Four chloroplast thylakoid lumen TPs were isolated from Nicotiana tabacum and were functionally analyzed as thylakoid lumen TPs. Typical chloroplast stroma-transit peptides and thylakoid lumen transit peptides (tTPs) are found in N. tabacum transit peptides (NtTPs) and the functions of these peptides are confirmed with TP–GFP fusion proteins under fluorescence microscopy and chloroplast fractionation, followed by Western blot analysis. During the functional analysis of tTPs, we uncovered the minimum 10 amino acid sequence is sufficient for thylakoid lumen transport. These ten amino acids can efficiently translocate GFP protein, even if they do not contain the twin-arginine residues required for the twin-arginine translocation (Tat) pathway, which is a typical thylakoid lumen transport. Further, thylakoid lumen transporting processes through the Tat pathway was examined by analyzing tTP sequence functions and we demonstrate that the importance of hydrophobic core for the tTP cleavage and target protein translocation.


2020 ◽  
Author(s):  
Yaqi Hao ◽  
Jiashu Chu ◽  
Lujing Shi ◽  
Cong Ma ◽  
Liangliang Hui ◽  
...  

Abstract BackgroundAtCYP38, a thylakoid lumen localized immunophilin, is essential for photosystem II (PSII) assembly and maintenance, but how AtCYP38 functions in chloroplast remains unknown. Based on previous functional studies and its crystal structure, we hypothesize that AtCYP38 should function via binding its targets or cofactors in the thylakoid lumen to influence PSII performance. Therefore, identifying its target proteins and cofactors would be a key step to understand the working mechanism of AtCYP38.ResultsTo identify potential interacting proteins of AtCYP38, we first adopted two web-based tools, ATTED-II and STRING, and found 15 proteins functionally related to AtCYP38. We then screened a yeast two-hybrid library including an Arabidopsis genome wide cDNA with the N-terminal domain, the C-terminal domain, and the full-length mature protein of AtCYP38. 25 positive targets were identified, but a very limited number of target proteins were localized in the thylakoid lumen. In order to specifically search interacting proteins of AtCYP38 in the thylakoid lumen, we created a yeast two-hybrid mini library including the thylakoid lumenal proteins and lumen fractions of thylakoid membrane proteins. After screening the mini library with 3 different forms of AtCYP38, we obtained 6 thylakoid membrane proteins and 9 thylakoid lumenal proteins as interacting proteins of AtCYP38. We further confirmed the localization of several identified proteins and their interaction between AtCYP38.ConclusionsAfter analysis with two web-based tools and yeast two-hybrid screenings against two different libraries, we identified a couple of potential interacting proteins, which could be functionally related to AtCYP38. We believe that the results will lay a foundation for unveiling the working mechanism of AtCYP38 in photosynthesis.


Author(s):  
Kelsey K. Dahlgren ◽  
Colin Gates ◽  
Thomas Lee ◽  
Jeffrey C. Cameron

AbstractCyanobacteria possess unique intracellular organization. Many proteomic studies have examined different features of cyanobacteria to learn about the intracellular structures and their respective functions. While these studies have made great progress in understanding cyanobacterial physiology, the conventional fractionation methods used to purify cellular structures have limitations; specifically, certain regions of cells cannot be purified with existing fractionation methods. Proximity-based proteomics techniques were developed to overcome the limitations of biochemical fractionation for proteomics. Proximity-based proteomics relies on spatiotemporal protein labeling followed by mass spectrometry of the labeled proteins to determine the proteome of the region of interest. We performed proximity-based proteomics in the cyanobacterium Synechococcus sp. PCC 7002 with the APEX2 enzyme, an engineered ascorbate peroxidase. We determined the proteome of the thylakoid lumen, a region of the cell that has remained challenging to study with existing methods, using a translational fusion between APEX2 and PsbU, a lumenal subunit of photosystem II. Our results demonstrate the power of APEX2 as a tool to study the cell biology of intracellular features and processes, including photosystem II assembly in cyanobacteria, with enhanced spatiotemporal resolution.


2020 ◽  
Author(s):  
Azeez Beebo ◽  
Ahmad Zia ◽  
Christopher R. Kinzel ◽  
Andrei Herdean ◽  
Karim Bouhidel ◽  
...  

SUMMARYPhotosynthetic oxygen evolution by photosystem II requires water supply into the chloroplast to reach the thylakoid lumen. A rapid water flow is also required into the chloroplast for optimal oxygen evolution and to overcome osmotic stress. The mechanisms governing water transport in chloroplasts are largely unexplored. Previous proteomics indicated the presence of three aquaporins from the tonoplast intrinsic protein (TIP) family, TIP1;1, TIP1;2 and TIP2;1, in chloroplast membranes of Arabidopsis thaliana. Here we revisited their location and studied their role in chloroplasts. Localization experiments indicated that TIP2;1 resides in the thylakoid, whereas TIP1;2 is present in both thylakoid and envelope membranes. Mutants lacking TIP1;2 and/or TIP2;1 did not display a macroscopic phenotype when grown under standard conditions. The mutant chloroplasts and thylakoids underwent less volume changes than the corresponding wild type preparations upon osmotic treatment and in the light. Significantly reduced rates of photosynthetic electron transport were obtained in the mutant leaves, with implications on the CO2 fixation rates. However, electron transport rates did not significantly differ between mutants and wild type when isolated thylakoids were examined. Less acidification of the thylakoid lumen was measured in mutants thylakoids, resulting in a slower induction of delta pH-dependent photoprotective mechanisms. These results identify TIP1;2 and TIP2;1 as chloroplast proteins and highlight their importance for osmoregulation and optimal photosynthesis. A third aquaporin, TIP1;1, is present in the chloroplast envelope, and may play role in photosynthesis under excessive light conditions, as based on the weak photosynthetic phenotype of its mutant.


2020 ◽  
Vol 29 (3) ◽  
pp. 295-305
Author(s):  
Mauro M. Morgenfeld ◽  
Catalina F. Vater ◽  
E. Federico Alfano ◽  
Noelia A. Boccardo ◽  
Fernando F. Bravo-Almonacid

Sign in / Sign up

Export Citation Format

Share Document