scholarly journals Comparison of xTAG Respiratory Virus Panel and Verigene Respiratory Virus Plus for Detecting Influenza Virus and Respiratory Syncytial Virus

2014 ◽  
Vol 29 (2) ◽  
pp. 116-121 ◽  
Author(s):  
Sang Mee Hwang ◽  
Mi Suk Lim ◽  
Minsuk Han ◽  
Yun Ji Hong ◽  
Taek Soo Kim ◽  
...  
Viruses ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 234
Author(s):  
Sarah Al-Beltagi ◽  
Cristian Alexandru Preda ◽  
Leah V. Goulding ◽  
Joe James ◽  
Juan Pu ◽  
...  

The long-term control strategy of SARS-CoV-2 and other major respiratory viruses needs to include antivirals to treat acute infections, in addition to the judicious use of effective vaccines. Whilst COVID-19 vaccines are being rolled out for mass vaccination, the modest number of antivirals in use or development for any disease bears testament to the challenges of antiviral development. We recently showed that non-cytotoxic levels of thapsigargin (TG), an inhibitor of the sarcoplasmic/endoplasmic reticulum (ER) Ca2+ ATPase pump, induces a potent host innate immune antiviral response that blocks influenza A virus replication. Here we show that TG is also highly effective in blocking the replication of respiratory syncytial virus (RSV), common cold coronavirus OC43, SARS-CoV-2 and influenza A virus in immortalized or primary human cells. TG’s antiviral performance was significantly better than remdesivir and ribavirin in their respective inhibition of OC43 and RSV. Notably, TG was just as inhibitory to coronaviruses (OC43 and SARS-CoV-2) and influenza viruses (USSR H1N1 and pdm 2009 H1N1) in separate infections as in co-infections. Post-infection oral gavage of acid-stable TG protected mice against a lethal influenza virus challenge. Together with its ability to inhibit the different viruses before or during active infection, and with an antiviral duration of at least 48 h post-TG exposure, we propose that TG (or its derivatives) is a promising broad-spectrum inhibitor against SARS-CoV-2, OC43, RSV and influenza virus.


2017 ◽  
Vol 90 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Elisa H. Fleming ◽  
Eliana E. Ochoa ◽  
Joan E. Nichols ◽  
M. Kerry O'Banion ◽  
Alan R. Salkind ◽  
...  

2018 ◽  
Vol 105 ◽  
pp. 31-34 ◽  
Author(s):  
Laura Gimferrer ◽  
Cristina Andrés ◽  
Ariadna Rando ◽  
Maria Piñana ◽  
Maria Gema Codina ◽  
...  

2014 ◽  
Vol 95 (9) ◽  
pp. 1886-1891 ◽  
Author(s):  
Peirui Zhang ◽  
Hongjing Gu ◽  
Chengrong Bian ◽  
Na Liu ◽  
Zhiwei Li ◽  
...  

Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and the elderly, and no vaccine against this virus has yet been licensed. Here, we report a recombinant PR8 influenza virus with the RSV fusion (F) protein epitopes of the subgroup A gene inserted into the influenza virus non-structural (NS) gene (rFlu/RSV/F) that was generated as an RSV vaccine candidate. The rescued viruses were assessed by microscopy and Western blotting. The proper expression of NS1, the NS gene product, and the nuclear export protein (NEP) of rFlu/RSV/F was also investigated using an immunofluorescent assay. The rescued virus replicated well in the MDCK kidney cell line, A549 lung adenocarcinoma cell line and CNE-2Z nasopharyngeal carcinoma cell line. BALB/c mice immunized intranasally with rFlu/RSV/F had specific haemagglutination inhibition antibody responses against the PR8 influenza virus and RSV neutralization test proteins. Furthermore, intranasal immunization with rFlu/RSV/F elicited T helper type 1-dominant cytokine profiles against the RSV strain A2 virus. Taken together, our findings suggested that rFlu/RSV/F was immunogenic in vivo and warrants further development as a promising candidate vaccine.


Sign in / Sign up

Export Citation Format

Share Document