Mammalian lung development: Interactions in formation and morphogenesis of tracheal buds

1970 ◽  
Vol 175 (4) ◽  
pp. 455-466 ◽  
Author(s):  
Norman K. Wessells
2021 ◽  
Author(s):  
Nathan Gaddis ◽  
Joshua Fortriede ◽  
Minzhe Guo ◽  
Eric E. Bardes ◽  
Michal Kouril ◽  
...  

ABSTRACTAn improved understanding of the human lung necessitates advanced systems models informed by an ever-increasing repertoire of molecular omics, cellular, imaging and pathological datasets. To centralize and standardize information across broad lung research efforts we expanded the LungMAP.net website into a gateway portal. This portal connects a broad-spectrum of research networks, bulk and single-cell multi-omics data and a diverse collection of image data that span mammalian lung development and disease. The data are standardized across species and technologies using harmonized data and metadata models that leverage recent advances including those from the Human Cell Atlas, diverse ontologies, and the LungMAP CellCards initiative. To cultivate future discoveries, we have aggregated a diverse collection of single-cell atlases for multiple species (human, rhesus, mouse), to enable consistent queries across technologies, cohorts, age, disease and drug treatment. These atlases are provided as independent and integrated queriable datasets, with an emphasis on dynamic visualization, figure generation and reference-based classification of user-provided datasets (Azimuth). As this resource grows, we intend to increase the breadth of available interactive interfaces, data portals and datasets from LungMAP and external research efforts.


2007 ◽  
Vol 306 (1) ◽  
pp. 354
Author(s):  
Kelley S. Harris ◽  
Michael McManus ◽  
Brian Harfe ◽  
Xin Sun

2015 ◽  
Vol 406 (2) ◽  
pp. 222-234 ◽  
Author(s):  
Arianna Caprioli ◽  
Alethia Villasenor ◽  
Lyndsay A Wylie ◽  
Caitlin Braitsch ◽  
Leilani Marty-Santos ◽  
...  

2015 ◽  
Vol 97 ◽  
Author(s):  
YINGYING ZHAO ◽  
TIMOTHY P. O'BRIEN

SummaryDevelopment of mammalian lung involves reiterative outgrowth and branching of an epithelial tube into the surrounding mesenchymal bed. Each coordinated growth and branching cycle is driven by reciprocal signalling between epithelial and adjacent mesenchymal cells. This signalling network includes FGF, SHH, BMP4 and other pathways. We have characterized lung defects in 36Pub mice carrying a deletion that removes an antagonist of FGF signalling, Spry2. Spry2 deficient mice show an enlarged cystic structure located in the terminus of each lobes. Our study shows that Spry2 deficient lungs have reduced lung branching and the cystic structure forms in the early lung development stage. Furthermore, mice carrying a targeted disruption of Spry2 fail to complement the lung phenotype characterized in 36Pub mice. A Spry2-BAC transgene rescues the defect. Interestingly, cystic structure growth is accompanied by the reduced and spatially disorganized expression of Fgf10 and elevated expression of Shh and Bmp4. Altered signalling balance due to the loss of Spry2 causes a delayed branch cycle and cystic growth. Our data underscores the importance of restricting cellular responsiveness to signalling and highlights the interplay between morphogenesis events and spatial localization of gene expression.


Development ◽  
1991 ◽  
Vol 112 (2) ◽  
pp. 551-558 ◽  
Author(s):  
J. Roman ◽  
C.W. Little ◽  
J.A. McDonald

Cell-matrix interactions are generally considered critical for normal lung development. This is particularly likely to be true during the glandular stage, when the primitive airways are formed through a process termed branching morphogenesis. Integrins, transmembrane receptors that bind to extracellular matrices, are likely to mediate important interactions between embryonic cells and their matrices during branching morphogenesis. In this report, we examine the role of integrin receptors in this process. Immunohistochemical studies revealed that the integrins VLA 3, VLA 5 and integrin receptors to vitronectin are expressed in the epithelium and/or mesenchyme during the glandular stage of murine lung development. To correlate expression with function, an in vitro model of murine lung branching morphogenesis was utilized to examine branching in the presence of inhibitors of ligand binding to integrin receptors. One such reagent, a hexapeptide containing the RGD (Arg-Gly-Asp) sequence, diminished branching and resulted in an abnormal morphology, whereas a control peptide RGESP (Arg-Gly-Glu-Ser-Pro) had no effect. These findings suggest a critical role for cell-matrix interactions mediated via integrin receptors in early stages of mammalian lung development.


Sign in / Sign up

Export Citation Format

Share Document