branching morphogenesis
Recently Published Documents


TOTAL DOCUMENTS

953
(FIVE YEARS 129)

H-INDEX

91
(FIVE YEARS 6)

2022 ◽  
Author(s):  
Kasra Khalaj ◽  
Lina Antounians ◽  
Rebeca Lopes Figueira ◽  
Martin Post ◽  
Augusto Zani

Rationale: Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by reduced branching morphogenesis, which is responsible for poor clinical outcomes. Administration of amniotic fluid stem cell extracellular vesicles (AFSC-EVs) rescues branching morphogenesis in rodent fetal models of pulmonary hypoplasia. Herein, we hypothesized that AFSC-EVs exert their regenerative potential by affecting autophagy, a process required for normal lung development. Objectives: To evaluate autophagy in hypoplastic lungs throughout gestation and establish whether AFSC-EV administration improves branching morphogenesis through autophagy-mediated mechanisms. Methods: EVs were isolated from c-kit+ AFSC conditioned medium by ultracentrifugation and characterized for size, morphology, and EV markers. Branching morphogenesis was inhibited in rat fetuses by nitrofen administration to dams and in human fetal lung explants by blocking RAC1 activity with NSC23766. Expression of autophagy activators (BECN1 and ATG5) and adaptor (SQSTM1/p62) was analyzed in vitro (rat and human fetal lung explants) and in vivo (rat fetal lungs). Mechanistic studies on rat fetal primary lung epithelial cells were conducted using inhibitors for microRNA-17 and -20a contained in the AFSC-EV cargo and known to regulate autophagy. Measurements and Main Results: Rat and human models of fetal pulmonary hypoplasia showed reduced autophagy mainly at pseudoglandular and canalicular stages. AFSC-EV administration restored autophagy in both pulmonary hypoplasia models by transferring miR-17~92 cluster members contained in the EV cargo. Conclusions: AFSC-EV treatment rescues branching morphogenesis partly by restoring autophagy through miRNA cargo transfer. This study enhances our understanding of pulmonary hypoplasia pathogenesis and creates new opportunities for fetal therapeutic intervention in CDH babies.


2022 ◽  
Author(s):  
Kasra Khalaj ◽  
Rebeca Lopes Figueira ◽  
Lina Antounians ◽  
Sree Gandhi ◽  
Matthew Wales ◽  
...  

Pulmonary hypoplasia secondary to congenital diaphragmatic hernia (CDH) is characterized by impaired branching morphogenesis and differentiation. We have previously demonstrated that administration of extracellular vesicles derived from rat amniotic fluid stem cells (AFSC-EVs) rescues development of hypoplastic lungs at the pseudoglandular and alveolar stages in rodent models of CDH. Herein, we tested whether AFSC-EVs exert their regenerative effects at the canalicular and saccular stages, as these are translationally relevant for clinical intervention. To induce fetal pulmonary hypoplasia, we gavaged rat dams with nitrofen at embryonic day 9.5 and demonstrated that nitrofen-exposed lungs had impaired branching morphogenesis, dysregulated signaling pathways relevant to lung development (FGF10/FGFR2, ROBO/SLIT, Ephrin, Neuropilin 1, beta-catenin) and impaired epithelial and mesenchymal cell marker expression at both stages. AFSC-EVs administered to nitrofen-exposed lung explants rescued airspace density and increased the expression levels of key factors responsible for branching morphogenesis. Moreover, AFSC-EVs rescued the expression of alveolar type 1 and 2 cell markers at both canalicular and saccular stages, and restored markers of club, ciliated epithelial, and pulmonary neuroendocrine cells at the saccular stage. AFSC-EV treated lungs also had restored markers of lipofibroblasts and PDGFRA+ cells to control levels at both stages. EV tracking showed uptake of AFSC-EV RNA cargo throughout the fetal lung and an mRNA-miRNA network analysis identified that several miRNAs responsible for regulating lung development processes were contained in the AFSC-EV cargo. These findings suggest that AFSC-EV based therapies hold potential for restoring fetal lung growth and maturation in babies with pulmonary hypoplasia secondary to CDH.


Author(s):  
Anna Karen Sigurdardottir ◽  
Arna Steinunn Jonasdottir ◽  
Arni Asbjarnarson ◽  
Hildur Run Helgudottir ◽  
Thorarinn Gudjonsson ◽  
...  

AbstractThe human breast is composed of terminal duct lobular units (TDLUs) that are surrounded by stroma. In the TDLUs, basement membrane separates the stroma from the epithelial compartment, which is divided into an inner layer of luminal epithelial cells and an outer layer of myoepithelial cells. Stem cells and progenitor cells also reside within the epithelium and drive a continuous cycle of gland remodelling that occurs throughout the reproductive period. D492 is an epithelial cell line originally isolated from the stem cell population of the breast and generates both luminal and myoepithelial cells in culture. When D492 cells are embedded into 3D reconstituted basement membrane matrix (3D-rBM) they form branching colonies mimicking the TDLUs of the breast, thereby providing a well-suited in vitro model for studies on branching morphogenesis and breast development. Peroxidasin (PXDN) is a heme-containing peroxidase that crosslinks collagen IV with the formation of sulfilimine bonds. Previous studies indicate that PXDN plays an integral role in basement membrane stabilisation by crosslinking collagen IV and as such contributes to epithelial integrity. Although PXDN has been linked to fibrosis and cancer in some organs there is limited information on its role in development, including in the breast. In this study, we demonstrate expression of PXDN in breast epithelium and stroma and apply the D492 cell line to investigate the role of PXDN in cell differentiation and branching morphogenesis in the human breast. Overexpression of PXDN induced basal phenotype in D492 cells, loss of plasticity and inhibition of epithelial-to-mesenchymal transition as is displayed by complete inhibition of branching morphogenesis in 3D culture. This is supported by results from RNA-sequencing which show significant enrichment in genes involved in epithelial differentiation along with significant negative enrichment of EMT factors. Taken together, we provide evidence for a novel role of PXDN in breast epithelial differentiation and mammary gland development.


2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Irene-Yanran Wang ◽  
Chen-Fang Chung ◽  
Sima Babayeva ◽  
Tamara Sogomonian ◽  
Elena Torban

In vertebrates, the planar cell polarity (PCP) pathway regulates tissue morphogenesis during organogenesis, including the kidney. Mutations in human PCP effector proteins have been associated with severe syndromic ciliopathies. Importantly, renal hypoplasia has been reported in some patients. However, the developmental disturbance that causes renal hypoplasia is unknown. Here, we describe the early onset of profound renal hypoplasia in mice homozygous for null mutation of the PCP effector gene, Fuzzy. We found that this phenotype is caused by defective branching morphogenesis of the ureteric bud (UB) in the absence of defects in nephron progenitor specification or in early steps of nephrogenesis. By using various experimental approaches, we show that the loss of Fuzzy affects multiple signaling pathways. Specifically, we found mild involvement of GDNF/c-Ret pathway that drives UB branching. We noted the deficient expression of molecules belonging to the Bmp, Fgf and Shh pathways. Analysis of the primary cilia in the UB structures revealed a significant decrease in ciliary length. We conclude that renal hypoplasia in the mouse Fuzzy mutants is caused by defective UB branching associated with dysregulation of ciliary and non-ciliary signaling pathways. Our work suggests a PCP effector-dependent pathogenetic mechanism that contributes to renal hypoplasia in mice and humans.


Biomolecules ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1829
Author(s):  
Wen-Yang Hu ◽  
Parivash Afradiasbagharani ◽  
Ranli Lu ◽  
Lifeng Liu ◽  
Lynn A. Birch ◽  
...  

The molecular mechanisms underlying prostate development can provide clues for prostate cancer research. It has been demonstrated that MEK/ERK signaling downstream of androgen-targeted FGF10 signaling directly induces prostatic branching during development, while Rho/Rho-kinase can regulate prostate cell proliferation. MEK/ERK and Rho/Rho kinase regulate myosin light chain kinase (MLCK), and MLCK regulates myosin light chain phosphorylation (MLC-P), which is critical for cell fate, including cell proliferation, differentiation, and apoptosis. However, the roles and crosstalk of the MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis have not been examined. In the present study, we used numerical and image analysis to characterize lobe-specific rat prostatic branching during postnatal organ culture and investigated the roles of FGF10-MEK/ERK and Rho/Rho kinase signaling pathways in prostatic morphogenesis. Prostates exhibited distinctive lobe-specific growth and branching patterns in the ventral (VP) and lateral (LP) lobes, while exogenous FGF10 treatment shifted LP branching towards a VP branching pattern. Treatment with inhibitors of MEK1/2, Rho, Rho kinase, or MLCK significantly inhibited VP growth and blocked branching morphogenesis, further supporting critical roles for MEK/ERK and Rho/Rho kinase signaling pathways in prostatic growth and branching during development. We propose that MLCK-regulated MLC-P may be a central downstream target of both signaling pathways in regulating prostate morphogenesis.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1808
Author(s):  
Lorena Longaretti ◽  
Piera Trionfini ◽  
Valerio Brizi ◽  
Christodoulos Xinaris ◽  
Caterina Mele ◽  
...  

No effective treatments are available for familial steroid-resistant Focal Segmental Glomerulosclerosis (FSGS), characterized by proteinuria due to ultrastructural abnormalities in glomerular podocytes. Here, we studied a private PAX2 mutation identified in a patient who developed FSGS in adulthood. By generating adult podocytes using patient-specific induced pluripotent stem cells (iPSC), we developed an in vitro model to dissect the role of this mutation in the onset of FSGS. Despite the PAX2 mutation, patient iPSC properly differentiated into podocytes that exhibited a normal structure and function when compared to control podocytes. However, when exposed to an environmental trigger, patient podocytes were less viable and more susceptible to cell injury. Fixing the mutation improved their phenotype and functionality. Using a branching morphogenesis assay, we documented developmental defects in patient-derived ureteric bud-like tubules that were totally rescued by fixing the mutation. These data strongly support the hypothesis that the PAX2 mutation has a dual effect, first in renal organogenesis, which could account for a suboptimal nephron number at birth, and second in adult podocytes, which are more susceptible to cell death caused by environmental triggers. These abnormalities might translate into the development of proteinuria in vivo, with a progressive decline in renal function, leading to FSGS.


Author(s):  
Alice E. Stanton ◽  
Katharine Goodwin ◽  
Aswin Sundarakrishnan ◽  
Jacob M. Jaslove ◽  
Jason P. Gleghorn ◽  
...  

Mechanical forces are increasingly recognized as important determinants of cell and tissue phenotype and also appear to play a critical role in organ development. During the fetal stages of lung morphogenesis, the pressure of the fluid within the lumen of the airways is higher than that within the chest cavity, resulting in a positive transpulmonary pressure. Several congenital defects decrease or reverse transpulmonary pressure across the developing airways and are associated with a reduced number of branches and a correspondingly underdeveloped lung that is insufficient for gas exchange after birth. The small size of the early pseudoglandular stage lung and its relative inaccessibility in utero have precluded experimental investigation of the effects of transpulmonary pressure on early branching morphogenesis. Here, we present a simple culture model to explore the effects of negative transpulmonary pressure on development of the embryonic airways. We found that negative transpulmonary pressure decreases branching, and that it does so in part by altering the expression of fibroblast growth factor 10 (Fgf10). The morphogenesis of lungs maintained under negative transpulmonary pressure can be rescued by supplementing the culture medium with exogenous FGF10. These data suggest that Fgf10 expression is regulated by mechanical stress in the developing airways. Understanding the mechanical signaling pathways that connect transpulmonary pressure to FGF10 can lead to the establishment of novel non-surgical approaches for ameliorating congenital lung defects.


2021 ◽  
Author(s):  
Eugenia M. Yazlovitskaya ◽  
Erin Plosa ◽  
Fabian Bock ◽  
Olga M. Viquez ◽  
Glenda Mernaugh ◽  
...  

The main laminin (LM)-binding integrins α3β1, α6β1 and α6β4 are co-expressed in the developing kidney collecting duct (CD) system. We previously showed that deleting the integrin α3 or α6 subunit in the ureteric bud (UB), which gives rise to the kidney collecting system, caused either a mild or no branching morphogenesis phenotype, respectively. To determine whether these two integrin subunits co-operate in kidney CD development, we deleted α3 and α6 in the developing UB. The collecting system of the double knockout phenocopied the α3 integrin conditional knockout. However, with age the mice developed severe inflammation and fibrosis around the CDs resulting in kidney failure. Integrin α3α6 null CD epithelial cells showed increased secretion of pro-inflammatory cytokines and displayed mesenchymal characterisitcs causing loss of barrier function. These features resulted from increased NF-κB activity, which regulated the Snail/Slug transcription factors and their downstream targets. These data suggest that LM-binding integrins play a key role in the maintenance of kidney tubule epithelial cell polarity and decrease pro-inflammatory cytokine secretion by regulating NF-κB-dependent signaling.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mehmet Can Uçar ◽  
Dmitrii Kamenev ◽  
Kazunori Sunadome ◽  
Dominik Fachet ◽  
Francois Lallemend ◽  
...  

AbstractBranching morphogenesis governs the formation of many organs such as lung, kidney, and the neurovascular system. Many studies have explored system-specific molecular and cellular regulatory mechanisms, as well as self-organizing rules underlying branching morphogenesis. However, in addition to local cues, branched tissue growth can also be influenced by global guidance. Here, we develop a theoretical framework for a stochastic self-organized branching process in the presence of external cues. Combining analytical theory with numerical simulations, we predict differential signatures of global vs. local regulatory mechanisms on the branching pattern, such as angle distributions, domain size, and space-filling efficiency. We find that branch alignment follows a generic scaling law determined by the strength of global guidance, while local interactions influence the tissue density but not its overall territory. Finally, using zebrafish innervation as a model system, we test these key features of the model experimentally. Our work thus provides quantitative predictions to disentangle the role of different types of cues in shaping branched structures across scales.


Sign in / Sign up

Export Citation Format

Share Document