Changes in lectin-binding pattern in the digestive tract ofXenopus laevis during metamorphosis. II. Small intestine

1990 ◽  
Vol 205 (1) ◽  
pp. 9-15 ◽  
Author(s):  
Atsuko Ishizuya-Oka ◽  
Atsumi Shimozawa
Author(s):  
C. N. Zanuzzi ◽  
C. G. Barbeito ◽  
P. A. Fontana ◽  
E. L. Portiansky ◽  
E. J. Gimeno

2019 ◽  
Author(s):  
Mahfud Mahfud ◽  
Ihwan

Excessive hunting and poaching for commercial purpose of Varanus salvator in Indonesia can cause a decline in this animal population. However, the scientific information of this animal especially about the biologic of organ system is rarely reported. Therefore, this case opens up opportunities for researching, which aims to study the anatomy of digestive tract of water monitor macroscopically. This research has been conducted in Biology Laboratory, University of Muhammadiyah Kupang for 5 months from March to August 2016. The digestive organ of this animal that has been preserved in alcohol 70% was obtained before from two males of water monitors. Preservation process: the animal were anesthetized, exsanguinated, and fixated in 4 paraformaldehyde by tissue perfusion method. Observations were performed to the visceral site and morphometrical of digestive tract. The resulted data was analysed descriptively and presented in tables and figures. The digestive tract of water monitor consist of esophagus, stomach, small intestine, large intestine and cloaca. The dimension of each organ is different based on its structures and functions. The esophagus of water monitor connects the mouth cavity and the stomach and also as the entrance of food to the stomach. Water monitor stomach were found in cranial part of abdomen, in left side of liver. The small intestine was longer than stomach and it is a winding muscular tube in abdomen in posterior side of liver. The large intestine consist of colon and cloaca, while cecum was not found. This channel was extend lateromedially in abdomen to cloaca between left and right kidneys. The cloaca was the end of digestive tract which excreted feces and urine. From this research, we can conclude that the digestive tract of water monitor consists of esophagus, stomach, small intestine, and large intestine. It’s difficult to differentiate small intestine and large intestine because there are no cecum.


2013 ◽  
Vol 48 (5) ◽  
pp. 850-857 ◽  
Author(s):  
CG Barbeito ◽  
HH Ortega ◽  
V Matiller ◽  
EJ Gimeno ◽  
NR Salvetti

1971 ◽  
Vol 26 (2) ◽  
pp. 123-134 ◽  
Author(s):  
D. E. Beever ◽  
D. J. Thomson ◽  
E. Pfeffer ◽  
D. G. Armstrong

1. The effect of drying and ensiling ryegrass on the site of digestion of the energy andcarbohydrate fractions was studied in sheep fitted with rumen cannulas and re-entrant can-nulas in the proximal duodenum and terminal ileum.2. The sheep were given fresh (frozen) grass, dried grass, wilted and unwilted silage pre-pared from herbage harvested from the same sward. The grass diets were offered twice dailyto each animal and paper impregnated with chromium sesquioxide was administered twicedaily into the rumen. Twenty-four hour collections of duodenal and ileal digesta, adjusted togive 100 yo recovery of Cr2O3, were analysed to determine the extent of digestion in the fore-stomachs, the small intestine and the caecum and colon.3. Total digestibility of the gross energy was similar for the fresh grass, dried grass andwilted silage diets (67·4,68·1 and67·5 %)but higher for the unwilted silage (72·0 %, P < 0·01).There was an increased flow of energy into the small intestine when the sheep were given driedgrass and unwilted silage. The proportion of the apparently digested energy lost within thesmall intestine was greater when the dried grass was given (302 yo) than when the fresh grasswas given (23·6 yo).4. Drying or ensiling of wilted material affected digestion neither in the entire alimentarytract nor in the different sections of the tract, of some carbohydrate fractions. About 97 yo ofthe digested water-soluble carbohydrate, over 90 yo of the digested cellulose and over 70 yo ofthe digested hemicellulose were digested before reaching the small intestine. The increasedamount of energy entering the duodenum of the sheep given the dried grass was notaccounted for by changes in the fate of these carbohydrate fractions in the digestive tract. Withunwilted silage, digestibilities of the cellulose and hemicellulose fractions were higher, andlower proportions of the digested carbohydrates were lost before the small intestine.


Author(s):  
Khusanov Erkin ◽  
Ortikbaeva Nilufar ◽  
Korzhavov Sherali

The nutritional nature of mammals, which has developed during a long evolution, leads to adaptive - morphological changes in their digestive tract and its immune structures, although the general laws of their structural organization are identical. The literature has data on the study of the immune structures of the small intestine under normal conditions and under the influence of certain factors. In the structure of immune structures there are numerous parallelisms, however, in each class of vertebrates, complication of this organization is achieved independently. The small intestine is an important section of the digestive tube, where the final chemical processing of the chyme and the absorption of nutrients into the body take place. However, the comparative morphology of the immune structures of the small intestine in mammals with different nutrition patterns remains poorly understood.


2012 ◽  
Vol 75 (8) ◽  
pp. 1124-1135 ◽  
Author(s):  
Gianluca Accogli ◽  
Sara Zizza ◽  
Angel García-lópez ◽  
Carmen Sarasquete ◽  
Salvatore Desantis

Sign in / Sign up

Export Citation Format

Share Document