S. FALKOW, Infectious Multiple Drug Resistance. 300 S., 34 Abb., 73 Tab., 11 Tafeln. London 1975: Pion Limited. £ 7.70

1977 ◽  
Vol 17 (3) ◽  
pp. 255-256
Author(s):  
U. Taubeneck
2020 ◽  
Vol 85 (12-13) ◽  
pp. 1560-1569
Author(s):  
D. A. Knorre ◽  
K. V. Galkina ◽  
T. Shirokovskikh ◽  
A. Banerjee ◽  
R. Prasad

Genetics ◽  
2003 ◽  
Vol 165 (4) ◽  
pp. 1641-1649
Author(s):  
Cecilia Dahlberg ◽  
Lin Chao

Abstract Although plasmids can provide beneficial functions to their host bacteria, they might confer a physiological or energetic cost. This study examines how natural selection may reduce the cost of carrying conjugative plasmids with drug-resistance markers in the absence of antibiotic selection. We studied two plasmids, R1 and RP4, both of which carry multiple drug resistance genes and were shown to impose an initial fitness cost on Escherichia coli. To determine if and how the cost could be reduced, we subjected plasmid-containing bacteria to 1100 generations of evolution in batch cultures. Analysis of the evolved populations revealed that plasmid loss never occurred, but that the cost was reduced through genetic changes in both the plasmids and the bacteria. Changes in the plasmids were inferred by the demonstration that evolved plasmids no longer imposed a cost on their hosts when transferred to a plasmid-free clone of the ancestral E. coli. Changes in the bacteria were shown by the lowered cost when the ancestral plasmids were introduced into evolved bacteria that had been cured of their (evolved) plasmids. Additionally, changes in the bacteria were inferred because conjugative transfer rates of evolved R1 plasmids were lower in the evolved host than in the ancestral host. Our results suggest that once a conjugative bacterial plasmid has invaded a bacterial population it will remain even if the original selection is discontinued.


2001 ◽  
Vol 120 (5) ◽  
pp. A524
Author(s):  
Lillian Maggio-Price ◽  
Donna Shows ◽  
Kim Waggie ◽  
Andrew Burich ◽  
Weiping Zeng ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 5-10
Author(s):  
N.V. Kuznetsov ◽  
A.S. Lesonen ◽  
U.M. Markelov ◽  
E.D. Mikhailova

The article presents the results of predicting the dynamics of the spread of new cases of tuberculosis (TB) with multiple drug resistance (MDR) in the Republic of Karelia, as well as the costs of treating patients with tuberculosis, considering the different effectiveness of treatment. It has been demonstrated that while enhancing efficiency of treatment, due to the rapid determination of drug resistance by the method of polymerase chain reaction and a decrease in treatment gaps (using food kits), the effectiveness of treatment is significantly increased and the prevalence of MDR-TB decreases, which leads to significant budget savings.


Sign in / Sign up

Export Citation Format

Share Document