energetic cost
Recently Published Documents


TOTAL DOCUMENTS

764
(FIVE YEARS 229)

H-INDEX

61
(FIVE YEARS 7)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
R. C. Riddick ◽  
A. D. Kuo

AbstractThe metabolic cost of human running is not well explained, in part because the amount of work performed actively by muscles is largely unknown. Series elastic tissues such as tendon can save energy by performing work passively, but there are few direct measurements of the active versus passive contributions to work in running. There are, however, indirect biomechanical measures that can help estimate the relative contributions to overall metabolic cost. We developed a simple cost estimate for muscle work in humans running (N = 8) at moderate speeds (2.2–4.6 m/s) based on measured joint mechanics and passive dissipation from soft tissue deformations. We found that even if 50% of the work observed at the lower extremity joints is performed passively, active muscle work still accounts for 76% of the net energetic cost. Up to 24% of this cost compensates for the energy lost in soft tissue deformations. The estimated cost of active work may be adjusted based on assumptions of multi-articular energy transfer, elasticity, and muscle efficiency, but even conservative assumptions yield active work costs of at least 60%. Passive elasticity can reduce the active work of running, but muscle work still explains most of the overall energetic cost.


2022 ◽  
Vol 34 ◽  
Author(s):  
Tiago Magalhães da Silva Freitas ◽  
Gilberto Nepomuceno Salvador

Abstract Aim Determine the length-weight relationship (LWR), the period of reproduction, and evaluate the variation of the condition factor (K) of Hypostomus affinis from two coastal drainages in southeastern Brazil, assessing the influence of the rainfall on these biological aspects. Methods fish were sampled quarterly between April 2008 and April 2010 in tributaries of the Doce River basin (DRB) and the Paraíba do Sul River basin (PSRB). Specimens were caught using gillnets. LWR parameters were assessed by location and sex through a t-test. We used the frequency of mature specimens (FM) to evaluate the breeding period. Both FM and K values were assessed by a sinusoidal equation. Results A total of 492 specimens was captured, of which 128 were from the Doce River basin (DRB) and 364 from the Paraíba do Sul River basin (PSRB). In both areas, specimens showed a negative allometric growth type. We collected mature specimens along the studied period in both drainages, with the highest frequency observed at the beginning of the rainy season. We found a positive correlation between the rate of matures and the local rainfall variation. The condition factor (K) was lower for specimens from DRB and did not show a cyclic trend. On the other hand, we observed a cyclic chance of the K values for the individual from the PSRB, peaking in the transitional dry-rainy period. However, it was not possible to correlate it to the rainfall variation. Conclusions LWR parameters of H. affinis were consistent with data already available in the literature. The rainfall may influence the FM but not the K values. In this case, biological characteristics such as reproduction and (or) feeding may be jointly driving a discrete variation of K values. The reduction in K values in the rainy periods suggests a remarkable energetic cost for the reproductive process. In short, our results help us to understand the life cycle of a fish species within a highly modified environment, especially by dams.


Author(s):  
Amy K. Loya ◽  
Sarah K. Van Houten ◽  
Bernadette M. Glasheen ◽  
Douglas M. Swank

A muscle undergoing cyclical contractions requires fast and efficient muscle activation and relaxation to generate high power with relatively low energetic cost. To enhance activation and increase force levels during shortening, some muscle types have evolved stretch activation (SA), a delayed increased in force following rapid muscle lengthening. SA's complementary phenomenon is shortening deactivation (SD), a delayed decrease in force following muscle shortening. SD increases muscle relaxation, which decreases resistance to subsequent muscle lengthening. While it might be just as important to cyclical power output, SD has received less investigation than SA. To enable mechanistic investigations into SD and quantitatively compare it to SA, we developed a protocol to elicit SA and SD from Drosophila and Lethocerus indirect flight muscles (IFM) and Drosophila jump muscle. When normalized to isometric tension, Drosophila IFM exhibited a 118% SD tension decrease, Lethocerus IFM dropped by 97%, and Drosophila jump muscle decreased by 37%. The same order was found for normalized SA tension: Drosophila IFM increased by 233%, Lethocerus IFM by 76%, and Drosophila jump muscle by only 11%. SD occurred slightly earlier than SA, relative to the respective length change, for both IFMs; but SD was exceedingly earlier than SA for jump muscle. Our results suggest SA and SD evolved to enable highly efficient IFM cyclical power generation and may be caused by the same mechanism. However, jump muscle SA and SD mechanisms are likely different, and may have evolved for a role other than to increase the power output of cyclical contractions.


2021 ◽  
Author(s):  
Veselina Marinova ◽  
Geoffrey P. F. Wood ◽  
Ivan Marziano ◽  
Matteo Salvalaglio

Surface defects play a crucial role in the process of crystal growth, as the incorporation of growth units generally takes place on under-coordinated sites on the growing crystal facet. In this work, we use molecular dynamics simulations to obtain information on the role of the solvent in the roughening of three morphologically-relevant crystal faces of form I of racemic ibuprofen. To this aim, we devise a computational strategy based on combining independent Well Tempered Metadynamics with Mean Force Integration. This approach enables us to evaluate the energetic cost associated with the formation of a surface vacancy for a set of ten solvents, covering a range of polarities and hydrogen-bonding ability. We find that both the mechanism of defect formation on these facets and the work associated with the process are indeed markedly solvent-dependent. The methodology developed in this work has been designed with the aim of capturing solvent effects at the atomistic scale while maintaining the computational efficiency necessary for implementation in high-throughput computational screenings of crystallization solvents.


2021 ◽  
Vol 8 ◽  
Author(s):  
Sonia F. Roberts ◽  
Daniel E. Koditschek

We discuss an active damping controller to reduce the energetic cost of a single step or jump of dynamic locomotion without changing the morphology of the robot. The active damping controller adds virtual damping to a virtual leg spring created by direct-drive motors through the robot’s leg linkage. The virtual damping added is proportional to the intrusion velocity of the robot’s foot, slowing the foot’s intrusion, and thus the rate at which energy is transferred to and dissipated by the ground. In this work, we use a combination of simulations and physical experiments in a controlled granular media bed with a single-leg robot to show that the active damping controller reduces the cost of transport compared with a naive compression-extension controller under various conditions.


2021 ◽  
Author(s):  
Narimane Dorey ◽  
Emanuela Butera ◽  
Nadjejda Espinel-Velasco ◽  
Sam Dupont

Ongoing ocean acidification (OA) is expected to affect marine organisms and ecosystems. While sea urchins can survive a wide range of pH, this comes at a high energetic cost, and early life stages are particularly vulnerable. Information on how OA affects transitions between life-history stages is scarce. We evaluated the direct and indirect effects of pH (pHT 8.0, 7.6 and 7.2) on the development and transition between life-history stages of the sea urchin Strongylocentrotus droebachiensis, from fertilization to early juvenile. Continuous exposure to low pH negatively affected larval mortality and growth. At pH 7.2, formation of the rudiment (the primordial juvenile) was delayed by two days. Larvae raised at pH 8.0 and transferred to 7.2 after competency had mortality rates five to six times lower than those kept at 8.0, indicating that pH also has a direct effect on older, competent larvae. Latent effects were visible on the larvae raised at pH 7.6: they were more successful in settling (45%) and metamorphosing (30%) than larvae raised at 8.0 (17 and 1% respectively). These direct and indirect effects of OA on settlement and metamorphosis have important implications for population survival.


2021 ◽  
Author(s):  
◽  
Carolann Schack

<p>Modularity is a fundamental concept in biology. Most taxa within the colonial invertebrate phylum Bryozoa have achieved division of labor through the development of specialized modules (polymorphs), and this group is perhaps the most outstanding exemplar of the phenomenon. This thesis addresses several gaps in the literature concerning the morphology, ecology, energetics, and evolvability of bryozoan polymorphism.  It has been over 40 years since the last review of bryozoan polymorphism, and here I provide a comprehensive update that describes the diversity, morphology, and function of bryozoan polymorphs and the significance of modularity to their evolutionary success. While the degree of module compartmentalization is important for the evolution of polymorphism in bryozoans, this does not appear to be the case for other colonial invertebrates.  To facilitate data collection, I developed a classification system for polymorphism in cheilostome bryozoans. While classification systems exist for bryozoan colony form, the system presented here is the first developed for polymorphism. This system is fully illustrated and non-hierarchical, enabling swift classification and statistical comparisons at many levels of detail.  Understanding community assembly is a key goal in community ecology, but previous work on bryozoan communities has focused on colony form rather than polymorphism. Environmental filtering influences community assembly by excluding ill-adapted species, resulting in communities with similar functional traits. An RLQ (a four-way ordination) analysis incorporating spatial data was run on a dataset of 642 species of cheilostomes from 779 New Zealand sites, to investigate environmental filtering of colony form and zooid polymorphism. This revealed environmental filtering of colony form: encrusting-cemented taxa were predominant in shallow environments with hard substrata (200 m). Furthermore, erect taxa found in shallow environments with high current speeds were typically jointed. Surprisingly, polymorphism also followed environmental gradients. External ovicells (brood chambers) were more common in deeper, low oxygen water than immersed and internal ovicells. This may reflect the oxygen needs of the embryo or increased predation intensity in shallow environments. Bryozoans with costae (rib-like spines) tended to be found in deeper water as well, while bryozoans with calcified frontal shields were found in shallow environments with a higher concentration of CaCO₃. Avicularia (defensive grasping structures) were not related to environmental conditions, and changes in pivot bar structure with depth likely represent a phylogenetic signal. Factors influencing community assembly were somewhat partitioned by levels of organization, since colony form responds to environmental conditions, while the effects of evolutionary history, predation, and environmental conditions were not well-separated for zooid-level morphology. Finally, rootlets may have been a key innovation that allowed cementing taxa to escape hard substrata, potentially contributing to the cheilostome radiation.  Despite the diversity of life on earth, many morphologies have not been achieved. Morphology can be limited by a variety of constraints (developmental, historical, biomechanical) and comparing the distribution of realized forms in a theoretical form-space (i.e. “morphospace”) can highlight which constraints are at play and potential functions. If traits cluster around biomechanical optima, then morphology may be shaped by strong selective pressures. In contrast, a well-explored (filled) morphospace suggests weak constraints and high morphological evolvability. Here, constraints on morphospace exploration were examined for 125 cheilostome bryozoan species from New Zealand. The mandible morphospaces for avicularia (beak-like polymorphs) were visualized using Coordinate-Point Extended Eigenshape analysis. Mechanical advantage, moment of inertia, drag, peak force, and rotational work required to close the mandible were calculated for theoretical (n=47) and real mandibles (n=224) to identify biomechanical optima. The volume and surface of area of the parcel of water passed through by the closing mandible (referred to as the “domain”) was also calculated. The theoretical morphospace of avicularia is well-explored, suggesting they are highly evolvable and have relaxed developmental constraints. However, there may be constraints within lineages. A well-developed fulcrum (complete pivot bar) may be an evolutionary pre/corequisite to evolving mandibles with extreme moments of inertia such as setose and highly spathulate forms. The most common mandible shape, triangular, represents a trade-off between maximizing domain size, minimizing energetic cost (force and construction material), and minimizing the potential for breakage. This suggests that they are well suited for catching epibionts, representing the first empirical evidence for avicularian function. Tendon length and mechanical advantage are limited by tendon width, which itself is constrained by the base width of the mandible. This explains the low mechanical advantage of setose mandibles and suggests that they are unable to grasp epibionts. The calories required to close the mandible of an avicularium (estimated from rotational work) are quite small (1.24 x 10⁻¹⁶ to 8.82 x 10⁻¹¹ cal).  Overall, this thesis highlights the complexity of bryozoan polymorphism and suggests cheilostome avicularia could provide a unique evolutionary system to study due to their apparent lack of strong developmental constraints. Future studies into the ecology of polymorphism should focus on the degree of investment (polymorph abundance within a colony) rather than presence or absence.</p>


2021 ◽  
Author(s):  
◽  
Carolann Schack

<p>Modularity is a fundamental concept in biology. Most taxa within the colonial invertebrate phylum Bryozoa have achieved division of labor through the development of specialized modules (polymorphs), and this group is perhaps the most outstanding exemplar of the phenomenon. This thesis addresses several gaps in the literature concerning the morphology, ecology, energetics, and evolvability of bryozoan polymorphism.  It has been over 40 years since the last review of bryozoan polymorphism, and here I provide a comprehensive update that describes the diversity, morphology, and function of bryozoan polymorphs and the significance of modularity to their evolutionary success. While the degree of module compartmentalization is important for the evolution of polymorphism in bryozoans, this does not appear to be the case for other colonial invertebrates.  To facilitate data collection, I developed a classification system for polymorphism in cheilostome bryozoans. While classification systems exist for bryozoan colony form, the system presented here is the first developed for polymorphism. This system is fully illustrated and non-hierarchical, enabling swift classification and statistical comparisons at many levels of detail.  Understanding community assembly is a key goal in community ecology, but previous work on bryozoan communities has focused on colony form rather than polymorphism. Environmental filtering influences community assembly by excluding ill-adapted species, resulting in communities with similar functional traits. An RLQ (a four-way ordination) analysis incorporating spatial data was run on a dataset of 642 species of cheilostomes from 779 New Zealand sites, to investigate environmental filtering of colony form and zooid polymorphism. This revealed environmental filtering of colony form: encrusting-cemented taxa were predominant in shallow environments with hard substrata (200 m). Furthermore, erect taxa found in shallow environments with high current speeds were typically jointed. Surprisingly, polymorphism also followed environmental gradients. External ovicells (brood chambers) were more common in deeper, low oxygen water than immersed and internal ovicells. This may reflect the oxygen needs of the embryo or increased predation intensity in shallow environments. Bryozoans with costae (rib-like spines) tended to be found in deeper water as well, while bryozoans with calcified frontal shields were found in shallow environments with a higher concentration of CaCO₃. Avicularia (defensive grasping structures) were not related to environmental conditions, and changes in pivot bar structure with depth likely represent a phylogenetic signal. Factors influencing community assembly were somewhat partitioned by levels of organization, since colony form responds to environmental conditions, while the effects of evolutionary history, predation, and environmental conditions were not well-separated for zooid-level morphology. Finally, rootlets may have been a key innovation that allowed cementing taxa to escape hard substrata, potentially contributing to the cheilostome radiation.  Despite the diversity of life on earth, many morphologies have not been achieved. Morphology can be limited by a variety of constraints (developmental, historical, biomechanical) and comparing the distribution of realized forms in a theoretical form-space (i.e. “morphospace”) can highlight which constraints are at play and potential functions. If traits cluster around biomechanical optima, then morphology may be shaped by strong selective pressures. In contrast, a well-explored (filled) morphospace suggests weak constraints and high morphological evolvability. Here, constraints on morphospace exploration were examined for 125 cheilostome bryozoan species from New Zealand. The mandible morphospaces for avicularia (beak-like polymorphs) were visualized using Coordinate-Point Extended Eigenshape analysis. Mechanical advantage, moment of inertia, drag, peak force, and rotational work required to close the mandible were calculated for theoretical (n=47) and real mandibles (n=224) to identify biomechanical optima. The volume and surface of area of the parcel of water passed through by the closing mandible (referred to as the “domain”) was also calculated. The theoretical morphospace of avicularia is well-explored, suggesting they are highly evolvable and have relaxed developmental constraints. However, there may be constraints within lineages. A well-developed fulcrum (complete pivot bar) may be an evolutionary pre/corequisite to evolving mandibles with extreme moments of inertia such as setose and highly spathulate forms. The most common mandible shape, triangular, represents a trade-off between maximizing domain size, minimizing energetic cost (force and construction material), and minimizing the potential for breakage. This suggests that they are well suited for catching epibionts, representing the first empirical evidence for avicularian function. Tendon length and mechanical advantage are limited by tendon width, which itself is constrained by the base width of the mandible. This explains the low mechanical advantage of setose mandibles and suggests that they are unable to grasp epibionts. The calories required to close the mandible of an avicularium (estimated from rotational work) are quite small (1.24 x 10⁻¹⁶ to 8.82 x 10⁻¹¹ cal).  Overall, this thesis highlights the complexity of bryozoan polymorphism and suggests cheilostome avicularia could provide a unique evolutionary system to study due to their apparent lack of strong developmental constraints. Future studies into the ecology of polymorphism should focus on the degree of investment (polymorph abundance within a colony) rather than presence or absence.</p>


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. 371-371
Author(s):  
Fangyu Li ◽  
Amal Wanigatunga ◽  
Qu Tian ◽  
Eleanor Simonsick ◽  
Murat Bilgel ◽  
...  

Abstract Higher energetic costs for mobility are associated with slow and declining gait speed. Slow gait is linked to cognitive decline and Alzheimer’s disease (AD), but the physiological underpinnings are note well-understood. We investigated the cross-sectional association between the energetic cost of walking and amyloid status (+/-) in 174 cognitively unimpaired men and women (52%) aged 78.5±8.6 years. The energetic cost of walking was assessed as the average oxygen consumption (VO2) during 2.5 minutes of customary-paced overground walking. Amyloid status was determined from 11C-Pittsburgh compound B (PiB) positron emission tomography (PET) imaging. Average energetic cost of walking was .169±.0379 ml/kg/m and 30% of the sample was PiB+. In logistic regression adjusted for demographics, APOE-e4, body composition and comorbidities, each 0.01ml/kg/m higher energy cost was associated with 12% increased odds of being PiB+ (OR=1.12; 95% CI:1.01-1.24). Inefficient walking may be a clinically meaningful physiological indicator of emerging AD-related pathology.


Sign in / Sign up

Export Citation Format

Share Document