Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples

2016 ◽  
Vol 39 (19) ◽  
pp. 3798-3805 ◽  
Author(s):  
Zolfaghar Aladaghlo ◽  
Alireza Fakhari ◽  
Mohammad Behbahani
2020 ◽  
Vol 103 (1) ◽  
pp. 227-234 ◽  
Author(s):  
Mohammad Behbahani

Abstract Background: Because of trace amounts of atrazine in water samples and the complexity of the matrix, direct trace monitoring of atrazine is not feasible by the abovementioned techniques. Hence, an efficient sample pretreatment procedure is necessary for cleanup and preconcentration of atrazine from sample matrices. Objective: In the current paper, a new and efficient sample preparation method named solvent-assisted dispersive solid-phase extraction (SA-DSPE), followed by HPLC–UV, was introduced for the monitoring of atrazine at trace levels in environmental water samples. Methods: In the present method, benzophenone was used as a sorbent for extraction of target molecules. For dispersing solid sorbents in sample solution, very low milligram amounts of benzophenone and dispersive solvent were mixed and fast-injected into the extraction media. A cloudy solution formed, and after interaction of atrazine and the dispersed solid sorbent, the cloudy solution was centrifuged. The extracted atrazine in the solid phase was dissolved in ethanol and analyzed by HPLC–UV. Results: The introduced method showed a low method detection limit (0.1 μg/L), good precision (relative SD: 3.9–6.9%), and appropriate relative recoveries (95–105%). Conclusions: Within this study, a sensitive and reliable method for the quantification of atrazine in wastewater samples was successfully developed. Highlights: The obtained figures of merit for the presented sample preparation method were appropriate. The applicability of the method for analysis of atrazine in real matrices was excellent.


Author(s):  
Kamran Bashir ◽  
Zhimin Luo ◽  
Guoning Chen ◽  
Hua Shu ◽  
Xia Cui ◽  
...  

Griseofulvin (GSF) is clinically employed to treat fungal infections in humans and animals. GSF was detected in surface waters as a pharmaceutical pollutant. GSF detection as an anthropogenic pollutant is considered as a possible source of drug resistance and risk factor in ecosystem. To address this concern, a new extraction and enrichment method was developed. GSF-surface molecularly imprinted polymers (GSF-SMIPs) were prepared and applied as solid phase extraction (SPE) sorbent. A dispersive solid phase extraction (DSPE) method was designed and combined with HPLC for the analysis of GSF in surface water samples. The performance of GSF-SMIPs was assessed for its potential to remove GSF from water samples. The factors affecting the removal efficiency such as sample pH and ionic strength were investigated and optimized. The DSPE conditions such as the amount of GSF-SMIPs, the extraction time, the type and volume of desorption solvents were also optimized. The established method is linear over the range of 0.1–100 µg/mL. The limits of detection and quantification were 0.01 and 0.03 µg/mL respectively. Good recoveries (91.6–98.8%) were achieved after DSPE. The intra-day and inter-day relative standard deviations were 0.8 and 4.3% respectively. The SMIPs demonstrated good removal efficiency (91.6%) as compared to powder activated carbon (67.7%). Moreover, the SMIPs can be reused 10 times for water samples. This is an additional advantage over single-use activated carbon and other commercial sorbents. This study provides a specific and sensitive method for the selective extraction and detection of GSF in surface water samples.


Sign in / Sign up

Export Citation Format

Share Document