scholarly journals Scattering of a few-cycle laser pulse by a plasma layer: the role of the carrier-envelope phase difference at relativistic intensities

2007 ◽  
Vol 4 (3) ◽  
pp. 218-225 ◽  
Author(s):  
S Varró
2007 ◽  
Vol 25 (3) ◽  
pp. 379-390 ◽  
Author(s):  
S. Varró

It has been shown that in the scattered radiation, generated by an ultrashort laser pulse impinging on a metal nano-layer, non-oscillatory wakefields appears with a definite sign. The magnitude of these wakefields is proportional to the incoming field strength, and the definite sign of them is governed by the cosine of the carrier-envelope phase difference of the incoming pulse. When we let such a Wakefield excite the electrons of a secondary target (say an electron beam, a metal surface or a gas jet), we can obtain 100 percent modulation in the electron signal in a given direction. This scheme can serve as a basis for the construction of a robust linear carrier-envelope phase difference meter. At relativistic laser intensities, the target is considered as a plasma layer in vacuum produced from a thin foil by a prepulse, which is followed by the main high-intensity laser pulse. The nonlinearities stemming from the relativistic kinematics lead to the appearance of higher-order harmonics in the scattered spectra. In general, the harmonic peaks are downshifted due to the presence of an intensity-dependent factor. This phenomenon is analogous to the famous intensity-dependent frequency shift in the nonlinear Thomson scattering on a single electron. In our analysis, an attention has also been paid to the role of the carrier-envelope phase difference of the incoming few-cycle laser pulse. It is also shown that the spectrum has a long tail where the heights of the peaks vary practically within one order of magnitude forming a quasi-continuum. Fourier synthesizing the components from this plateau region attosecond pulses has obtained.


Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 528
Author(s):  
Marcel Ruijter ◽  
Vittoria Petrillo ◽  
Thomas C. Teter ◽  
Maksim Valialshchikov ◽  
Sergey Rykovanov

High-energy radiation can be generated by colliding a relativistic electron bunch with a high-intensity laser pulse—a process known as Thomson scattering. In the nonlinear regime the emitted radiation contains harmonics. For a laser pulse whose length is comparable to its wavelength, the carrier envelope phase changes the behavior of the motion of the electron and therefore the radiation spectrum. Here we show theoretically and numerically the dependency of the spectrum on the intensity of the laser and the carrier envelope phase. Additionally, we also discuss what experimental parameters are required to measure the effects for a beamed pulse.


2014 ◽  
Vol 47 (43) ◽  
pp. 435105 ◽  
Author(s):  
Kaihu Zhang ◽  
Lan Jiang ◽  
Xin Li ◽  
Xuesong Shi ◽  
Dong Yu ◽  
...  

JETP Letters ◽  
2000 ◽  
Vol 72 (2) ◽  
pp. 38-41 ◽  
Author(s):  
T. Auguste ◽  
P. D’Oliveira ◽  
S. Hulin ◽  
P. Monot ◽  
J. Abdallah ◽  
...  

2012 ◽  
Vol 86 (4) ◽  
Author(s):  
E. P. Benis ◽  
M. Bakarezos ◽  
N. A. Papadogiannis ◽  
M. Tatarakis ◽  
S. Divanis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document