nuclear rotation
Recently Published Documents


TOTAL DOCUMENTS

118
(FIVE YEARS 6)

H-INDEX

25
(FIVE YEARS 2)

BMC Zoology ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Ivana Kerly S. Viana ◽  
Gicelle M. F. S. ◽  
Juliana C. D. Pantoja ◽  
Renata S. Oliveira ◽  
Yanne A. Mendes ◽  
...  

Abstract Background Hypostominae is a subfamily of the family Loricariidae that has a great diversity of species. Accordingly, testicular studies in fish can contribute to the phylogeny and taxonomy of species and to the comparison of reproductive aspects between species. Thus, this work aimed to characterize the testicular morphology and spermatogenesis of the Hypostominae species Baryancistrus xanthellus, Peckoltia oligospila and Hypancistrus zebra. Results B. xanthellus, P. oligospila and H. zebra had an anastomosed tubular type of testis. The germinal epithelium was continuous with unrestricted spermatogonia, and the proliferative, meiotic and spermiogenic phases were defined in all species. In the spermiogenic phase, spermatids were classified as initial, intermediate and final. Only in B. xanthellus in the final phase was there nuclear rotation. The sperm for the three species had a head with an oval shape and a single flagellum composed of the short midpiece, principal piece and end piece. B. xanthellus and P. oligospila showed a cylindrical flagellum and H. zebra showed projections that produced a flattened appearance. Conclusions On the basis testicular structure and ultrastructural characteristics of the germ cells, there was a greater relationship between B. xanthelus and P. oligospila, while H. zebra had particular characteristics. These aspects show that despite belonging to the same subfamily, the species have distinct biological characteristics.


mSphere ◽  
2021 ◽  
Vol 6 (2) ◽  
Author(s):  
Chelsey C. Spriggs

ABSTRACT Chelsey C. Spriggs works in the field of DNA viral entry with a specific interest in virus-host interactions. In this mSphere of Influence article, she reflects on how two papers, “The HCMV assembly compartment is a dynamic Golgi-derived MTOC that controls nuclear rotation and virus spread” (D. J. Procter, A. Banerjee, M. Nukui, K. Kruse, et al., Dev Cell 45:83–100.e7, 2018, https://doi.org/10.1016/j.devcel.2018.03.010) and “Cytoplasmic control of intranuclear polarity by human cytomegalovirus” (D. J. Procter, C. Furey, A. G. Garza-Gongora, S. T. Kosak, D. Walsh, Nature 587:109–114, 2020, https://doi.org/10.1038/s41586-020-2714-x), impacted her research by reinforcing the scientific value in using viruses to understand cell biology.


2020 ◽  
pp. 1-8
Author(s):  
Haruhiko Yoshioka ◽  
Kouki Minami ◽  
Hirokazu Odashima ◽  
Keita Miyakawa ◽  
Kayo Horie ◽  
...  

<b><i>Objective:</i></b> The complexity of chromatin (i.e., irregular geometry and distribution) is one of the important factors considered in the cytological diagnosis of cancer. Fractal analysis with Kirsch edge detection is a known technique to detect irregular geometry and distribution in an image. We examined the outer cutoff value for the box-counting (BC) method for fractal analysis of the complexity of chromatin using Kirsch edge detection. <b><i>Materials:</i></b> The following images were used for the analysis: (1) image of the nucleus for Kirsch edge detection measuring 97 × 122 pix (10.7 × 13.4 μm) with a Feret diameter of chromatin mesh (<i>n</i> = 50) measuring 17.3 ± 1.8 pix (1.9 ± 0.5 μm) and chromatin network distance (<i>n</i> = 50) measuring 4.4 ± 1.6 pix (0.49 ± 0.18 μm), and (2) sample images for Kirsch edge detection with varying diameters (10.4, 15.9, and 18.1 μm) and network width of 0.4 μm. <b><i>Methods:</i></b> Three types of bias that can affect the outcomes of fractal analysis in cytological diagnosis were defined. (1) Nuclear position bias: images of 9 different positions generated by shifting the original position of the nucleus in the middle of a 256 × 256 pix (28.1 μm) square frame in 8 compass directions. (2) Nuclear rotation bias: images of 8 different rotations obtained by rotating the original position of the nucleus in 45° increments (0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°). (3) Nuclear size bias: images of varying size (diameter: 190 pix [10.4 μm], 290 pix [15.9 μm], and 330 pix [18.1 μm]) with the same mesh pattern (network width: 8 pix [0.4 μm]) within a 512 × 512 pix square. Different outer cutoff values for the BC method (256, 128, 64, 32, 16, and 8 pix) were applied for each bias to assess the fractal dimension and to compare the coefficient of variation (CV). <b><i>Results:</i></b> The BC method with the outer cutoff value of 32 pix resulted in the least variation of fractal dimension. Specifically, with the cutoff value of 32 pix, the CV of nuclear position bias, nuclear rotation bias, and nuclear size bias were &#x3c;1% (0.1, 0.4, and 0.3%, respectively), with no significant difference between the position and rotation bias (<i>p</i> = 0.19). Our study suggests that the BC method with the outer cutoff value of 32 pix is suitable for the analysis of the complexity of chromatin with chromatin mesh.


Author(s):  
Mark A. Caprio ◽  
Patrick J. Fasano ◽  
Pieter Maris ◽  
Anna E. McCoy ◽  
James P. Vary
Keyword(s):  

2019 ◽  
Vol 5 (6) ◽  
pp. eaav9960 ◽  
Author(s):  
Go Nagamatsu ◽  
So Shimamoto ◽  
Nobuhiko Hamazaki ◽  
Yohei Nishimura ◽  
Katsuhiko Hayashi

The most immature oocytes remain dormant in primordial follicles in the ovary, ensuring the longevity of female reproductive life. Despite its biological and clinical importance, knowledge of mechanisms regulating the dormant state remains limited. Here, we show that mechanical stress plays a key role in maintaining the dormant state of the oocytes in primordial follicles in mice. Transcriptional and histological analyses revealed that oocytes were compressed by surrounding granulosa cells with extracellular matrix. This environmental state is functionally crucial, as oocytes became activated upon loosening the structure and the dormancy was restored by additional compression with exogenous pressure. The nuclei of oocytes in primordial follicles rotated in response to the mechanical stress. Pausing the rotation triggered activation of oocytes through nuclear export of forkhead box O3 (FOXO3). These results provide insights into the mechanisms by which oocytes are kept dormant to sustain female reproductive life.


2018 ◽  
Vol 45 (1) ◽  
pp. 83-100.e7 ◽  
Author(s):  
Dean J. Procter ◽  
Avik Banerjee ◽  
Masatoshi Nukui ◽  
Kevin Kruse ◽  
Vadim Gaponenko ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document