thin foil
Recently Published Documents


TOTAL DOCUMENTS

708
(FIVE YEARS 65)

H-INDEX

36
(FIVE YEARS 3)

Author(s):  
QianQian Han ◽  
Xuesong Geng ◽  
Baifei Shen ◽  
Liangliang Ji ◽  
Zhizhan Xu

Abstract With the forthcoming 10-100PW laser facilities, laser-driven electron-positron-pair production has gained particular interest. Here a scheme to enhance the generation of dense electron-positron-pairs is proposed and numerically demonstrated, employing double laser pulses at the intensity level of 10^23 W cm^(-2). The first laser accelerates a thin foil to a relativistic speed via the radiation-pressure-acceleration mechanism and a counter-propagating laser irradiates this flying plasma layer. The simulation results indicate that a high-yield and well-collimated positron beam (~5.5×10^10 positrons/pulse, 8.8nC/pulse) is generated with a large peak density(1.1×10^21 cm^(-3) ) by using tens-of-PW laser pulses.


2021 ◽  
Author(s):  
Phillip Bonofiglo ◽  
Mario Podesta ◽  
Roscoe B White ◽  
Vasily Kiptily ◽  
Victor Goloborodko ◽  
...  

Abstract An integrated energetic particle transport model has been constructed in JET plasmas constrained by experimental fast ion loss measurements. The model incorporates a synthetic fast ion loss detector identical to JET's thin-foil Faraday cup fast ion loss detector array. The loss model combines analyses from the TRANSP and ORBIT-kick codes with enhanced features for producing the synthetic diagnostic. Extensions to the ORBIT code framework allow a full-orbit representation within the vacuum region that can map particles directly to an installed detector geometry. Since synthetic fast ion loss detectors are plagued by weak loss statistics, a novel reverse integration biasing scheme has been implemented to boost computational efficiency. The model is validated against experimental loss measurements induced by long-lived kink modes and is found to be in good agreement. This confirms the development of a fully integrated transport/loss model which can be quantitatively verified against experiment allowing for future validation and predictive studies. The model is particularly useful for more complicated plasma scenarios that involve multiple fast ion species such as JET's 2021 DT-campaign.


2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Tim Arniko Meinhold ◽  
Naveen Kumar

The process of radiation pressure acceleration (RPA) of ions is investigated with the aim of suppressing the Rayleigh–Taylor-like transverse instabilities in laser–foil interaction. This is achieved by imposing surface and density modulations on the target surface. We also study the efficacy of RPA of ions from density modulated and structured targets in the radiation dominated regime where the radiation reaction effects are important. We show that the use of density modulated and structured targets and the radiation reaction effects can help in achieving the twin goals of high ion energy (in GeV range) and lower energy spread.


Author(s):  
Giovanni Chianese ◽  
Pasquale Franciosa ◽  
Jonas Nolte ◽  
Dariusz Ceglarek ◽  
Stanislao Patalano

Abstract This paper addresses sensor characterization to detect variations in part-to-part gap and weld penetration depth using photodiode-based signals during Remote Laser Welding (RLW) of battery tab connectors. Photodiode-based monitoring has been implemented largely for structural welds due to its relatively low cost and ease of automation. However, research in sensor characterization, monitoring and diagnosis of weld defects during joining of battery tab connectors is at an infancy and results are inconclusive. Motivated by the high variability during the welding process of dissimilar metallic thin foils, this paper aims to characterize the signals generated by a photodiode-based sensor to determine whether variations in weld quality can be isolated and diagnosed. Photodiode-based signals were collected during RLW of copper-to-steel thin-foil lap joint (Ni-plated copper 300 μm to Ni-plated steel 300 μm). The presented methodology is based on the evaluation of the energy intensity and scatter level of the signals. The energy intensity gives information about the amount of radiation emitted during the welding process, and the scatter level is associated with the accumulated and un-controlled variations. Findings indicated that part-to-part gap variations can be diagnosed by observing the step-change in the plasma signal, with no significant contribution given by the back-reflection. Results further suggested that over-penetration corresponds to significant increment of the scatter level in the sensor signals. Opportunities for automatic isolation and diagnosis of defective welds based on supervised machine learning are discussed.


Plasma ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 670-680
Author(s):  
Mohammed Almassarani ◽  
Sixu Meng ◽  
Burgard Beleites ◽  
Falk Ronneberger ◽  
Gerhard G. Paulus ◽  
...  

We experimentally investigated the accelerated proton beam characteristics such as maximum energy and number by varying the incident laser parameters. For this purpose, we varied the laser energy, focal spot size, polarization, and pulse duration. The proton spectra were recorded using a single-shot Thomson parabola spectrometer equipped with a microchannel plate and a high-resolution charge-coupled device with a wide detection range from a few tens of keV to several MeV. The outcome of the experimental findings is discussed in detail and compared to other theoretical works.


Eng ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 372-385
Author(s):  
Abdul Aziz ◽  
Ming Yang ◽  
Tetsuhide Shimizu ◽  
Tsuyoshi Furushima

The surface roughening (Ra), martensitic phase transformation (MPT), and grain misorientation (GMO) behavior of stainless steel 304 and 316 in various grain sizes (Dg) were studied experimentally, including five cycles of sequential uniaxial tensile stress testing and Scanning Electron Microscope-Electron Back Scattered Diffraction (SEM-EBSD) investigation. The MPT and GMO characteristics were sequentially investigated using tensile testing and SEM-EBSD analysis. The correlation between MPT, GMO, martensitic volume fraction (Mf), and Ra behavior were investigated. The experimental results showed that increasing the total strain from 5.0% to 25.0% increased the MPT, GMO, and Mf, which were transformed from the metastable austenitic phase in stainless steel (SUS) 304. The increasing total strain increased Ra for all kinds of Dg. Furthermore, SUS 304 and SUS 316 were used to compare the roughening mechanism. The MPT was very high and spread uniformly in fine grain of SUS 304 thin foil, but the MPT was low and not uniform in coarse grain of SUS 304 thin foil. There was no MPT in SUS 316 thin foil, both in coarse and fine grain. The GMO in fine grains, both in SUS 304 and SUS 316 thin foils, spread uniformly. The GMO in coarse grains, both in SUS 304 and SUS 316 thin foils, did not spread uniformly. Surface roughness increased higher in coarse grain than fine grain for both of SUS 304 and SUS 316 thin foil. SUS 304 increased higher than SUS 316 thin foil. The effect of inhomogeneous deformation due to the MPT is a more important factor than GMO in coarse grain.


Author(s):  
Jaanus Eskusson ◽  
Thomas Thomberg ◽  
Tavo Romann ◽  
Karmen Lust ◽  
Enn Lust ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document