Temporal dynamics of soil bacterial communities and multifunctionality are more sensitive to introduced plants than to microbial additions in a multicontaminated soil

2019 ◽  
Vol 30 (7) ◽  
pp. 852-865
Author(s):  
Shuo Jiao ◽  
Nini Du ◽  
Xiaoyu Zai ◽  
Xuee Gao ◽  
Weimin Chen ◽  
...  
2021 ◽  
Vol 9 ◽  
Author(s):  
Cécile Monard ◽  
Jean-Pierre Caudal ◽  
Daniel Cluzeau ◽  
Jean-Luc Le Garrec ◽  
Eve Hellequin ◽  
...  

Volatile organic compounds (VOCs) are emitted by plants and microorganisms and have significant impacts on atmospheric chemistry. Soil systems are sources of VOCs driven by abiotic and biotic factors. We investigated the emissions of VOCs by soils and their plant cover from three contrasted biotopes: meadow, heathland and oak forest, during 24-h in summer. We hypothesized that the spatial and temporal dynamics of VOC fluxes are reflected in soil properties, soil microbial communities, vegetation covers, and litter composition that differed in the three biotopes VOC fluxes were measured after direct on-field sampling at four sampling times (two at night and two at day) using a proton transfer reaction mass spectrometer, and results were linked to some climatic, edaphic and biotic parameters simultaneously monitored in each biotope. While differences in the composition of the soil bacterial communities, in the richness of the plant cover and in some soil physicochemical properties between the three biotopes were observed, the total VOC fluxes from the soil to the atmosphere did not present spatial patterns. However, differences in the mass composition of the VOC spectra were detected; for example, the soil from the forest that was covered with oak leaf litter had specific bacterial communities and emitted distinct VOC spectra than the two other biotopes. The total VOC fluxes responded to rainfall and were significantly driven by soil temperature. While we observed changes in the structure of soil bacterial communities between day and night in all biotopes using fingerprinting analysis, a diurnal dynamic of VOC fluxes was only observed in the forest biotope where the soil was protected from rainfall due to the canopy. This soil presented higher fluxes in day time up to 10.8 µg VOCs h−1 m−2 and lower fluxes in night time down to 3.8 µg VOCs h−1 m−2. Overall, the present study supplies data regarding VOC emissions by soils which are scare compared to plant sources. The results highlighted the complex interconnections existing between abiotic and biotic parameters that could directly or indirectly drive VOC emissions by soil systems.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Erika Buscardo ◽  
József Geml ◽  
Steven K. Schmidt ◽  
Helena Freitas ◽  
Hillândia Brandão da Cunha ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Yu-Te Lin ◽  
Yu-Fei Lin ◽  
Isheng J. Tsai ◽  
Ed-Haun Chang ◽  
Shih-Hao Jien ◽  
...  

2021 ◽  
Vol 309 ◽  
pp. 107285
Author(s):  
Mengyu Gao ◽  
Jinfeng Yang ◽  
Chunmei Liu ◽  
Bowen Gu ◽  
Meng Han ◽  
...  

mBio ◽  
2014 ◽  
Vol 5 (4) ◽  
Author(s):  
Y. Verastegui ◽  
J. Cheng ◽  
K. Engel ◽  
D. Kolczynski ◽  
S. Mortimer ◽  
...  

ABSTRACTSoil microbial diversity represents the largest global reservoir of novel microorganisms and enzymes. In this study, we coupled functional metagenomics and DNA stable-isotope probing (DNA-SIP) using multiple plant-derived carbon substrates and diverse soils to characterize active soil bacterial communities and their glycoside hydrolase genes, which have value for industrial applications. We incubated samples from three disparate Canadian soils (tundra, temperate rainforest, and agricultural) with five native carbon (12C) or stable-isotope-labeled (13C) carbohydrates (glucose, cellobiose, xylose, arabinose, and cellulose). Indicator species analysis revealed high specificity and fidelity for many uncultured and unclassified bacterial taxa in the heavy DNA for all soils and substrates. Among characterized taxa,Actinomycetales(Salinibacterium),Rhizobiales(Devosia),Rhodospirillales(Telmatospirillum), andCaulobacterales(PhenylobacteriumandAsticcacaulis) were bacterial indicator species for the heavy substrates and soils tested. BothActinomycetalesandCaulobacterales(Phenylobacterium) were associated with metabolism of cellulose, andAlphaproteobacteriawere associated with the metabolism of arabinose; members of the orderRhizobialeswere strongly associated with the metabolism of xylose. Annotated metagenomic data suggested diverse glycoside hydrolase gene representation within the pooled heavy DNA. By screening 2,876 cloned fragments derived from the13C-labeled DNA isolated from soils incubated with cellulose, we demonstrate the power of combining DNA-SIP, multiple-displacement amplification (MDA), and functional metagenomics by efficiently isolating multiple clones with activity on carboxymethyl cellulose and fluorogenic proxy substrates for carbohydrate-active enzymes.IMPORTANCEThe ability to identify genes based on function, instead of sequence homology, allows the discovery of genes that would not be identified through sequence alone. This is arguably the most powerful application of metagenomics for the recovery of novel genes and a natural partner of the stable-isotope-probing approach for targeting active-yet-uncultured microorganisms. We expanded on previous efforts to combine stable-isotope probing and metagenomics, enriching microorganisms from multiple soils that were active in degrading plant-derived carbohydrates, followed by construction of a cellulose-based metagenomic library and recovery of glycoside hydrolases through functional metagenomics. The major advance of our study was the discovery of active-yet-uncultivated soil microorganisms and enrichment of their glycoside hydrolases. We recovered positive cosmid clones in a higher frequency than would be expected with direct metagenomic analysis of soil DNA. This study has generated an invaluable metagenomic resource that future research will exploit for genetic and enzymatic potential.


Sign in / Sign up

Export Citation Format

Share Document