scholarly journals Antioxidation and symbiotic nitrogen fixation function of prxA gene in Mesorhizobium huakuii

2019 ◽  
Vol 8 (10) ◽  
Author(s):  
Sanjiao Wang ◽  
Tiantian Lu ◽  
Qiang Xue ◽  
Ke Xu ◽  
Guojun Cheng
2020 ◽  
Author(s):  
Hetao Wu ◽  
Qian Zou ◽  
Sha Luo ◽  
Donglan He ◽  
Xiaohua Li ◽  
...  

Abstract Background: Flavin-containing monooxygenases (FMOs) catalyze the NADPH-dependent N- or S- oxygenation of numerous foreign chemicals, and thus may mediate interactions between microorganisms and their chemical environment. The aim of this study was to investigate the role of FMO in symbiotic nitrogen fixation of Mesorhizobium huakuii and its host plant Astragalus sinicus.Results: A mutation in M. huakuii fmoA gene was generated by homologous recombination. The fmoA mutant grew more slowly than its parental strain, and displayed decreased antioxidative capacity under higher concentration of H2O2 and cumene hydroperoxide (CUOOH), indicating that FmoA plays an important role in response to the peroxides. The fmoA mutant strain displayed no difference of peroxidase activity and glutathione reductase activity, but significantly lower level of glutathione and hydrogen peroxide content than the wild type. Real-time quantitative PCR showed that the fmoA gene expression is significantly up-regulated in three different stages of nodule development. The fmoA mutant was severely impaired in its rhizosphere colonization, and its symbiotic properties in Astragalus sinicus were drastically affected. Transcriptomes in root-nodule bacteroids were analyzed and compared. A total of 1233 genes were differentially expressed, of which 560 were up-regulated and 673 were down-regulated in HKfmoA bacteroids compared with that in 7653R bacteroids. The transcriptomic data allowed us to determine additional target genes, whose differential expression was able to explain the observed the changes of symbiotic phenotype in the mutant-infected nodules.Conclusions: The fmoA gene is essential for antioxidant capacity and symbiotic nitrogen fixation. Furthermore, RNA-Seq based global transcriptomic analysis provided a comprehensive view of M. huakuii fmoA gene involved in nodule senescence and symbiotic nitrogen fixation.


2019 ◽  
Vol 180 (1) ◽  
pp. 509-528
Author(s):  
Donglai Zhou ◽  
Yanan Li ◽  
Xuting Wang ◽  
Fuli Xie ◽  
Dasong Chen ◽  
...  

2020 ◽  
Vol 12 (11) ◽  
pp. 2002-2014
Author(s):  
Ling-Ling Yang ◽  
Zhao Jiang ◽  
Yan Li ◽  
En-Tao Wang ◽  
Xiao-Yang Zhi

Abstract Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.


2021 ◽  
Vol 144 ◽  
pp. 105576
Author(s):  
Victor Hugo Vidal Ribeiro ◽  
Lucas Gontijo Silva Maia ◽  
Nicholas John Arneson ◽  
Maxwel Coura Oliveira ◽  
Harry Wood Read ◽  
...  

1992 ◽  
Vol 38 (6) ◽  
pp. 555-562 ◽  
Author(s):  
Vipin Rastogi ◽  
Monika Labes ◽  
Turlough Finan ◽  
Robert Watson

Symbiotic nitrogen fixation may be limited by the transport of C4 dicarboxylates into bacteroids in the nodule for use as a carbon and energy source. In an attempt to increase dicarboxylate transport, a plasmid was constructed in which the Rhizobium meliloti structural transport gene dctA was fused to a tryptophan operon promoter from Salmonella typhimurium, trpPO. This resulted in a functional dctA gene that was no longer under the control of the dctBD regulatory genes, but the recombinant plasmid was found to be unstable in R. meliloti. To stably integrate the trpPO-dctA fusion, it was recloned into pBR325 and recombined into the R. meliloti exo megaplasmid in the dctABD region. The resultant strain showed constitutive dctA-specific mRNA synthesis which was about 5-fold higher than that found in fully induced wild-type cells. Uptake assays showed that [14C]succinate transport by the trpPO-dctA fusion strain was constitutive, and the transport rate was the same as that of induced control cells. Acetylene reduction assays indicated a significantly higher rate of nitrogen fixation in plants inoculated with the trpPO-dctA fusion strain compared with the control. Despite this apparent increase, the plants had the same top dry weights as those inoculated with control cells. Key words: acetylene reduction, genetic engineering, nodule, plasmid stability, promoter.


Sign in / Sign up

Export Citation Format

Share Document