scholarly journals Deep analysis of the LRTOMTc.242G>A variant in non‐syndromic hearing loss North African patients and the Berber population: Implications for genetic diagnosis and genealogical studies

Author(s):  
Mohamed Ali Mosrati ◽  
Karima Fadhlaoui‐Zid ◽  
Amel Benammar‐Elgaaied ◽  
Abdullah Ahmed Gibriel ◽  
Mariem Ben Said ◽  
...  
2020 ◽  
Vol 21 (1) ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh-Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods. Methods This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects. Conclusion In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


2020 ◽  
Author(s):  
somayeh khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background: Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods.Methods: This study was a report on two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results: The implementation of WES to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) and its related variants was reported in the present study. Two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 were correspondingly identified and then segregations were confirmed using Sanger sequencing. According to online prediction tools, both identified variants seemed to have damaging effects.Conclusion: This study further supported the effectiveness of WES for genetic diagnosis of ARNSHL as a first approach.


2020 ◽  
Vol 32 (2) ◽  
pp. 117-129
Author(s):  
Barbara Vona ◽  
Julia Doll ◽  
Michaela A. H. Hofrichter ◽  
Thomas Haaf

Abstract Hereditary hearing loss is clinically and genetically heterogeneous. There are presently over 120 genes that have been associated with non-syndromic hearing loss and many more that are associated with syndromic forms. Despite an increasing number of genes that have been implemented into routine molecular genetic diagnostic testing, the diagnostic yield from European patient cohorts with hereditary hearing loss remains around the 50 % mark. This attests to the many gaps of knowledge the field is currently working toward resolving. It can be expected that many more genes await identification. However, it can also be expected, for example, that the mutational signatures of the known genes are still unclear, especially variants in non-coding or regulatory regions influencing gene expression. This review summarizes several challenges in the clinical and diagnostic setting for hereditary hearing loss with emphasis on syndromes that mimic non-syndromic forms of hearing loss in young children and other factors that heavily influence diagnostic rates. A molecular genetic diagnosis for patients with hearing loss opens several additional avenues, such as patient tailored selection of the best currently available treatment modalities, an understanding of the prognosis, and supporting family planning decisions. In the near future, a genetic diagnosis may enable patients to engage in preclinical trials for the development of therapeutics.


2020 ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background: Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods.Methods: This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families.Results: The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects.Conclusion: In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


2019 ◽  
Author(s):  
somayeh khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh Chaleshtori ◽  
Samira Asgharzadeh

Abstract Background: Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods.Methods: This study was a report on two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families.Results: The implementation of WES to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) and its related variants was reported in the present study. Two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 were correspondingly identified and then segregations were confirmed using Sanger sequencing. According to online prediction tools, both identified variants seemed to have damaging effects.Conclusion: This study further supported the effectiveness of WES for genetic diagnosis of ARNSHL as a first approach.


2020 ◽  
Author(s):  
somayeh khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background: Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods.Methods: This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results: The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects.Conclusion: In this study, whole exome sequencing were used as a first approach strategy to identify the two novel variants in MYO15A in two Iranian families with ARNSHL.


2020 ◽  
Author(s):  
Somayeh Khatami ◽  
Masomeh Askari ◽  
Fatemeh Bahreini ◽  
Morteza Hashemzadeh Chaleshtori ◽  
Saeed Hematian ◽  
...  

Abstract Background: Clinical genetic diagnosis of non-syndromic hearing loss (NSHL) is quite challenging. With regard to its high heterogeneity as well as large size of some genes, it is also really difficult to detect causative mutations using traditional approaches. One of the recent technologies called whole-exome sequencing (WES) has been thus developed in this domain to remove the limitations of conventional methods.Methods: This study was a report on a research study of two unrelated pedigrees with multiple affected cases of hearing loss (HL). Accordingly, clinical evaluations and genetic analysis were performed in both families. Results: The results of WES data analysis to uncover autosomal recessive non-syndromic hearing loss (ARNSHL) disease-causing variants was reported in the present study. Initial analysis identified two novel variants of MYO15A i.e. c.T6442A:p.W2148R and c.10504dupT:p.C3502Lfs*15 correspondingly which were later confirmed by Sanger validations and segregation analyses. According to online prediction tools, both identified variants seemed to have damaging effects.Conclusion: This study further supported the effectiveness of WES for genetic diagnosis of ARNSHL as a first approach.


2004 ◽  
Vol 124 (0) ◽  
pp. 29-34 ◽  
Author(s):  
F. Gualandi ◽  
A. Ravani ◽  
A. Berto ◽  
S. Burdo ◽  
P. Trevisi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document