Existence and uniqueness of solutions for nonlinear Volterra‐Fredholm integro‐differential equation of fractional order with boundary conditions

Author(s):  
Zaid Laadjal ◽  
Qing‐Hua Ma
2016 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Brahim Tellab ◽  
Kamel Haouam

<p>In this paper, we investigate the existence and uniqueness of solutions for second order nonlinear fractional differential equation with integral boundary conditions. Our result is an application of the Banach contraction principle and the Krasnoselskii fixed point theorem.</p>


Author(s):  
Reinhard Bürger

SynopsisExistence and uniqueness of solutions of an integro-differential equation that arises in population genetics are proved. This equation describes the evolution of type densities in a population that is subject to mutation and directional selection on a quantitative trait. It turns out that a certain Fréchet space is the natural framework to show existence and uniqueness. One of the main steps in the proof is the investigation of perturbations of generators of differentiable semigroups in Fréchet spaces.


Author(s):  
Chengbo Zhai ◽  
Lifang Wei

AbstractWe study a fractional integro-differential equation subject to multi-point boundary conditions: $$\left\{\begin{array}{l} D^\alpha_{0^+} u(t)+f(t,u(t),Tu(t),Su(t))=b,\ t\in(0,1),\\u(0)=u^\prime(0)=\cdots=u^{(n-2)}(0)=0,\\ D^p_{0^+}u(t)|_{t=1}=\sum\limits_{i=1}^m a_iD^q_{0^+}u(t)|_{t=\xi_i},\end{array}\right.$$where $\alpha\in (n-1,n],\ n\in \textbf{N},\ n\geq 3,\ a_i\geq 0,\ 0<\xi_1<\cdots<\xi_m\leq 1,\ p\in [1,n-2],\ q\in[0,p],b>0$. By utilizing a new fixed point theorem of increasing $\psi-(h,r)-$ concave operators defined on special sets in ordered spaces, we demonstrate existence and uniqueness of solutions for this problem. Besides, it is shown that an iterative sequence can be constructed to approximate the unique solution. Finally, the main result is illustrated with the aid of an example.


Sign in / Sign up

Export Citation Format

Share Document