scholarly journals Existence and regularity results for semi‐linearized compressible 2D fluids with generalized diffusion

Author(s):  
Luca Bisconti

2019 ◽  
Vol 69 (6) ◽  
pp. 1351-1366 ◽  
Author(s):  
Hocine Ayadi ◽  
Rezak Souilah

Abstract In this paper we prove some existence and regularity results for nonlinear unilateral problems with degenerate coercivity via the penalty method.



2018 ◽  
Vol 24 (2) ◽  
pp. 859-872 ◽  
Author(s):  
Hayk Mikayelyan

An optimal rearrangement problem in a cylindrical domainΩ=D× (0, 1) is considered, under the constraint that the force function does not depend on thexnvariable of the cylindrical axis. This leads to a new type of obstacle problem in the cylindrical domain     Δu(x′,xn) =χ{v>0}(x′) +χ{v=0}(x′) [∂νu(x′,0) +∂νu(x′, 1)]arising from minimization of the functional     ∫Ω½;|∇u(x)|2+χ{v>0}(x′)u(x) dx,wherev(x′) =∫01u(x′,t)dt, and∂νuis the exterior normal derivative ofuat the boundary. Several existence and regularity results are proven and it is shown that the comparison principle does not hold for minimizers.



2018 ◽  
Vol 2018 ◽  
pp. 1-7
Author(s):  
Aziz Bouhlal ◽  
Abderrahmane El Hachimi ◽  
Jaouad Igbida ◽  
El Mostafa Sadek ◽  
Hamad Talibi Alaoui

We investigate existence and regularity of solutions to unbounded elliptic problem whose simplest model is {-div[(1+uq)∇u]+u=γ∇u2/1+u1-q+f  in  Ω,  u=0  on  ∂Ω,}, where 0<q<1, γ>0 and f belongs to some appropriate Lebesgue space. We give assumptions on f with respect to q and γ to show the existence and regularity results for the solutions of previous equation.



2011 ◽  
Vol 354 (1) ◽  
pp. 377-400 ◽  
Author(s):  
Patricio Felmer ◽  
Alexander Quaas ◽  
Boyan Sirakov


Author(s):  
R. Tahraoui

SynopsisIn this paper, we study problems of the form:We obtain some existence and regularity results when Ω is either a ball or an annulus, without convexity hypothesis on g. We then apply these results to some shear problems in nonlinear elasticity.



Sign in / Sign up

Export Citation Format

Share Document