Circularly polarized beam steering array antenna fed by low magnitude and phase error response of Butler matrix to use pattern stabilization applications

Author(s):  
Ghader Sharifi ◽  
Yashar Zehforoosh ◽  
Tohid Sedghi ◽  
Manouchehr Takrimi
2011 ◽  
Vol 10 ◽  
pp. 1278-1281 ◽  
Author(s):  
Changrong Liu ◽  
Shaoqiu Xiao ◽  
Yong-Xin Guo ◽  
Ming-Chun Tang ◽  
Yan-Ying Bai ◽  
...  

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Hisamatsu Nakano ◽  
Tomoki Abe ◽  
Junji Yamauchi

2020 ◽  
Vol 10 (7) ◽  
pp. 2413 ◽  
Author(s):  
Yuntae Park ◽  
Jihoon Bang ◽  
Jaehoon Choi

A beam-steerable dual-circularly polarized 60 GHz antenna array is proposed. A 1 × 4 dual-fed stacked patch antenna array is integrated with an 8 × 8 Butler matrix. By utilizing the 8 × 8 Butler matrix, the proposed antenna array generates dual-circular polarization with beam-steering capability. The proposed antenna array system demonstrates good reflection coefficients in the frequency band ranging from 55.3 GHz to 64.9 GHz and has a mutual coupling of less than −10 dB over the frequency range of 57.5 GHz–63.2 GHz. At 60 GHz, the maximum gains and beam-steering angles for input ports 2, 4, 5, and 7 are 9.39 dBi at −38°, 10.67 dBi at −11°, 10.63 dBi at +11°, and 9.38 dBi at +39°, respectively. It is also demonstrated that the dual-polarization is well formed by switching the excitation ports. The right-handed circular polarization (RHCP) is formed when four ports from port 1 to port 4 are excited and left-handed circular polarization (LHCP) is formed when four ports from port 5 to port 8 are excited. The proposed antenna array system could be a good candidate for millimeter-wave 5G applications that require wide beam coverage and polarization diversity.


2013 ◽  
Vol 61 (3) ◽  
pp. 1475-1479 ◽  
Author(s):  
Changrong Liu ◽  
Shaoqiu Xiao ◽  
Yong-Xin Guo ◽  
Yan-Ying Bai ◽  
Bing-Zhong Wang

2015 ◽  
Vol 9 (9) ◽  
pp. 975-981 ◽  
Author(s):  
Saeid Karamzadeh ◽  
Vahid Rafii ◽  
Mesut Kartal ◽  
Bal S. Virdee

Sign in / Sign up

Export Citation Format

Share Document