A CPW-fed circular patch antenna inspired by reduced ground plane and CSRR slot for UWB applications with notch band

2017 ◽  
Vol 59 (4) ◽  
pp. 745-749 ◽  
Author(s):  
R. Boopathi Rani ◽  
S.K. Pandey
Author(s):  
Dr. N. Srinivasa Rao

In this paper, we have proposed a semi-circular patch antenna with a slot in the patch and a ground plane with a notch. The proposed antenna is designed using FR-4 substrate with a dielectric constant of 4.4 and the height of the substrate is 1.6mm. We simulated the antenna using HFSS and obtained the S11 < -10dB in the range of 3GHz to 15GHz, which covers the UWB range of 3.1GHz to 10.6GHz. An active circuit is designed and simulated using ADS to improve the gain of the antenna when working in a lossy medium other than air.


2015 ◽  
Vol 11 (4) ◽  
pp. 210 ◽  
Author(s):  
Soufian Lakrit ◽  
Hassan Ammor

A new small circular patch antenna for ultra-wideband (UWB) applications is presented. By studying this structure, it is shown that the insertion of a slot with the desired length and width in the ground plane, can lead to a large bandwidth. Our antenna, whose dimensions are 18×12×1.58 mm3, was fed by an SMA female connector with characteristic impedance of 50Ω in order to measure the return loss and VSWR and to compare them with the simulation results. The bandwidth obtained from measurements ranges from 3.52 to 13.67 GHz for VSWR < 2 and from 3.26 GHzto14.23GHz for VSWR < 3. The radiation pattern is omnidirectional on most of the operating band. High Frequency Structure Simulator (HFSS) was used for simulation whose results are in good agreement with the measured parameters.


Author(s):  
Bismah Hasan ◽  
Kamran Raza

Slotted circular printed layered patch antenna is designed, simulated and fabricated for 5G (Fifth Generation) wireless communication applications. The antenna consists of slots in the main radiating circular patch element for miniaturizing the size of the radiating element and providing dual band radiation characteristics. The feed line is separated on bottom substrate layer with EBG (Electromagnetic Band-Gap) embedded for enhancing the gain characteristics of the antenna. Superstrate layer is also used for improving the gain of the antenna where the distance from the radiating antenna element is optimized for maximizing the impedance bandwidth and radiation characteristics. The feed realization and impedance matching of the radiating slotted circular patch antenna is done by inducing slot at the middle ground plane of the slot embedded circular patch antenna system. The proposed configuration provides power radiation gain values of more than 5 dB for the Ka band of communications, whereas the impedance bandwidth of the antenna is verified for the dual resonances at 27.5 and 28.5 GHz. Dual band radiation characteristics are attained by embedding and optimizing the slot length and width in the circular patch radiator element that is placed on the upper face of the substrate RT Rogers Duroid 5880 layer. The length of the microstrip feed line embedded in the lower layer of the substrate is optimized for providing required bandwidth characteristics for the dual frequency point radiations. The antenna configuration is designed, modeled and simulated in CST (Central Standard Time) Microwave studio. The antenna is fabricated and measured vs simulated frequency response, gain patterns and current density plots are presented for the verification of antenna operation in the desired frequency bands.


Sign in / Sign up

Export Citation Format

Share Document