A compact flower slotted dual band notched ultrawideband antenna integrated with Ku band for ultrawideband, medical, direct broadcast service, and fixed satellite service applications

2020 ◽  
Vol 63 (2) ◽  
pp. 556-563
Author(s):  
V. N. Koteswara Rao Devana ◽  
A. Maheswara Rao
2020 ◽  
Vol 20 (2) ◽  
pp. 331-336 ◽  
Author(s):  
The Linh Pham ◽  
Hong Tiep Dinh ◽  
Dinh Hai Le ◽  
Xuan Khuyen Bui ◽  
Son Tung Bui ◽  
...  

2021 ◽  
Vol 36 (7) ◽  
pp. 852-857
Author(s):  
Yongliang Zhang ◽  
Xiuzhu Lv ◽  
Jiaxuan Han ◽  
Shuai Bao ◽  
Yao Cai ◽  
...  

In this paper, a highly efficient dual-band transmitarray antenna using cross and square rings elements is presented for X and Ku bands. The dual-band transmitarray is designed for downlink/uplink frequencies of Ku band satellite communications. The transmitarray element consists of four metal patches and two dielectric substrates. The metal patch is printed on both sides of the substrate. By optimizing the parameters, the transmitarray element can achieve a transmission phase coverage greater than 360° and work independently in both frequency bands. Then, a method to select the size of the element is proposed, so that all the elements in the array can realize the transmission phase of the two frequencies as much as possible. A 201-elements transmitarray antenna is fabricated and measured and the band ratio of the antenna is 1.13. The measured maximum gain at 11.5 GHz is 22.4 dB, corresponding to the aperture efficiency is 52.7%. The measured maximum gain at 13 GHz is 24.2 dB, corresponding to the aperture efficiency is 62.4%. The 1-dB gain bandwidths are 9.7% (10.8-11.9 GHz) at X band and 9% (12.6-13.8 GHz) at Ku band.


Nanophotonics ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 703-714 ◽  
Author(s):  
Shahid Iqbal ◽  
Hamid Rajabalipanah ◽  
Lei Zhang ◽  
Xiao Qiang ◽  
Ali Abdolali ◽  
...  

AbstractIn this paper, a dual-band reflective meta-hologram is designed providing two distinct information channels whose field intensity distributions can be independently manipulated at the same time. The proposed pure-phase meta-hologram is composed of several frequency-dispersive coding meta-atoms possessing each of 2-bit digital statuses of “00”, “01”, “10”, and “11” at either the lower (X-band) or the higher (Ku-band) frequency band. Relying on the weighted Gerchberg-Saxton phase retrieval algorithm, different illustrative examples have been provided to theoretically inspect the dual-band performance of our coding meta-hologram. Numerical simulations validate the proposed frequency multiplexing meta-holography with the ability to project two different high-quality images with low cross-talk on two X-band and Ku-band near-field channels located at distinct pre-determined distances from the metasurface plane. As proof of concept, two meta-hologram samples are fabricated, and the experimental results corroborate well the numerical simulations and theoretical predictions. The designed meta-hologram features all fascinating advantages of the coding metasurfaces while its performance overcomes that of previous studies due to providing two information channels rather than the conventional single-channel holography. The frequency multiplexing acquired by the proposed bi-spectral coding meta-hologram may provide great opportunities in a variety of applications, such as data storage and information processing.


Sign in / Sign up

Export Citation Format

Share Document