Achieving Productivity to Recover and Restore Columbia River Stream‐Type Chinook Salmon Relies on Increasing Smolt‐To‐Adult Survival

2020 ◽  
Vol 40 (3) ◽  
pp. 789-803
Author(s):  
Charles E. Petrosky ◽  
Howard A Schaller ◽  
Eric S. Tinus ◽  
Timothy Copeland ◽  
Adam J. Storch
2014 ◽  
Vol 71 (2) ◽  
pp. 259-271 ◽  
Author(s):  
Howard A. Schaller ◽  
Charles E. Petrosky ◽  
Eric S. Tinus

Evidence suggests Snake River stream-type Chinook salmon (Oncorhynchus tshawytscha) experience substantial delayed mortality in the marine environment as a result of their outmigration experience through the Federal Columbia River Power System (FCRPS). We analyzed mortality patterns using methods that incorporated downriver reference populations passing fewer dams, and temporal approaches that were independent of reference populations. Our results from the alternative spatial and temporal methods consistently corroborated with spawner–recruit residuals and smolt-to-adult survival rate data sets, indicating that Snake River salmon survived about one quarter as well as the reference populations. Temporal analysis indicated that a high percentage (76%) of Snake River juvenile salmon that survived the FCRPS subsequently died in the marine environment as a result of their outmigration experience. Through this and previous studies, it is evident that delayed hydrosystem mortality increases with the number of powerhouse passages and decreases with the speed of outmigration. Therefore, a promising conservation approach would be to explore management experiments that evaluate these relationships by increasing managed spill levels at the dams during the spring migration period.


Author(s):  
Charlotte Rasmussen ◽  
Carl O. Ostberg ◽  
David R. Clifton ◽  
James L. Holloway ◽  
Russell J. Rodriguez

2006 ◽  
Vol 63 (8) ◽  
pp. 1752-1762 ◽  
Author(s):  
Matthew L Keefer ◽  
Christopher C Caudill ◽  
Christopher A Peery ◽  
Theodore C Bjornn

Upstream-migrating adult salmon must make a series of correct navigation and route-selection decisions to successfully locate natal streams. In this field study, we examined factors influencing migration route selections early in the migration of 4361 radio-tagged adult Chinook salmon (Oncorhynchus tshawytscha) as they moved upstream past dams in the large (~1 km wide) Columbia River. Substantial behavioral differences were observed among 11 conspecific populations, despite largely concurrent migrations. At dams, Chinook salmon generally preferred ladder passage routes adjacent to the shoreline where their natal tributaries entered, and the degree of preference increased as salmon proximity to natal tributaries increased. Columbia River discharge also influenced route choices, explaining some route selection variability. We suggest that salmon detect lateral gradients in orientation cues across the Columbia River channel that are entrained within tributary plumes and that these gradients in cues can persist downstream for tens to hundreds of kilometres. Detection of tributary plumes in large river systems, using olfactory or other navigation cues, may facilitate efficient route selection and optimize energy conservation by long-distance migrants.


2000 ◽  
Vol 57 (3) ◽  
pp. 616-627 ◽  
Author(s):  
Louis W Botsford ◽  
Charles M Paulsen

We assessed covariability among a number of spawning populations of spring-summer run chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin by computing correlations among several different types of spawner and recruit data. We accounted for intraseries correlation explicitly in judging the significance of correlations. To reduce the errors involved in computing effective degrees of freedom, we computed a generic effective degrees of freedom for each data type. In spite of the fact that several of these stocks have declined, covariability among locations using several different combinations of spawner and recruitment data indicated no basinwide covariability. There was, however, significant covariability among index populations within the three main subbasins: the Snake River, the mid-Columbia River, and the John Day River. This covariability was much stronger and more consistent in data types reflecting survival (e.g., the natural logarithm of recruits per spawner) than in data reflecting abundance (e.g., spawning escapement). We also tested a measure of survival that did not require knowing the age structure of spawners, the ratio of spawners in one year to spawners 4 years earlier. It displayed a similar spatial pattern.


Sign in / Sign up

Export Citation Format

Share Document