efficient route
Recently Published Documents


TOTAL DOCUMENTS

1910
(FIVE YEARS 222)

H-INDEX

66
(FIVE YEARS 8)

2022 ◽  
Vol 178 ◽  
pp. 106046
Author(s):  
Zhenghao Wang ◽  
Liang Chen ◽  
Zhifeng Qin ◽  
Ke Yang ◽  
Bin Liang ◽  
...  

2022 ◽  
Author(s):  
Piotr Szcześniak ◽  
Bartłomiej Furman

A simple, efficient and user-friendly protocol for the preparation of structurally diverse enaminones from enamides has been developed. The strategy is based on a photo-induced intramolecular Fries-type rearrangement. The photochemical...


2021 ◽  
Vol 933 ◽  
Author(s):  
Calum S. Skene ◽  
Kunihiko Taira

Phase-reduction analysis captures the linear phase dynamics with respect to a limit cycle subjected to weak external forcing. We apply this technique to study the phase dynamics of the self-sustained oscillations produced by a Rijke tube undergoing thermoacoustic instability. Through the phase-reduction formulation, we are able to reduce these dynamics to a scalar equation for the phase, which allows us to efficiently determine the synchronisation properties of the system. For the thermoacoustic system, we find the conditions for which $m:n$ frequency locking occurs, which sheds light on the mechanisms behind asynchronous and synchronous quenching. We also reveal the optimal placement of pressure actuators that provide the most efficient route to synchronisation.


Nanomaterials ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 68
Author(s):  
Yin Yang ◽  
Ziyang Wang ◽  
Shaobo Zheng

Scalable production of large size and high quality graphene is an important prerequisite to fully realize its commercial applications. Herein, we propose a high-efficient route for preparing few-layer graphene. The secondary exfoliation of unexfoliated graphite flakes from electrochemical exfoliation was achieved by using ultrasonication assisted microwave exfoliation technique. The results show that the as-prepared sample has a C/O of 15.2, a thickness of about 1 nm and a transverse dimension of over 100 nm, and the Raman spectrogram shows low defects upon reduction of the sample. These results suggest that electrolytic graphene can be exfoliated to form graphene nanosheets under ultrasonic-assisted microwave technology, thus indicating that the current method has great potential for synthesizing high-quality graphene at an industrial-scale.


InfoMat ◽  
2021 ◽  
Author(s):  
Yuan Huang ◽  
Yun‐Kun Wang ◽  
Xin‐Yu Huang ◽  
Guan‐Hua Zhang ◽  
Xu Han ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
David Topping ◽  
Thomas J. Bannan ◽  
Hugh Coe ◽  
James Evans ◽  
Caroline Jay ◽  
...  

The increasing amount of data collected about the environment brings tremendous potential to create digital systems that can predict the impact of intended and unintended changes. With growing interest in the construction of Digital Twins across multiple sectors, combined with rapid changes to where we spend our time and the nature of pollutants we are exposed to, we find ourselves at a crossroads of opportunity with regards to air quality mitigation in cities. With this in mind, we briefly discuss the interplay between available data and state of the science on air quality, infrastructure needs and areas of opportunities that should drive subsequent planning of the digital twin ecosystem and associated components. Data driven modeling and digital twins are promoted as the most efficient route to decision making in an evolving atmosphere. However, following the diverse data streams on which these frameworks are built, they must be supported by a diverse community. This is an opportunity to build a collaborative space to facilitate closer working between instrument manufacturers, data scientists, atmospheric scientists, and user groups including but not limited to regional and national policy makers.


2021 ◽  
Author(s):  
Sebastian Gude ◽  
Gordon J Pherribo ◽  
Michiko E Taga

All organisms rely on complex metabolites such as amino acids, nucleotides, and cofactors for essential metabolic processes. Some microbes synthesize these fundamental ingredients of life de novo, while others rely on uptake to fulfill their metabolic needs. Although certain metabolic processes are inherently 'leaky', the mechanisms enabling stable metabolite provisioning among microbes in the absence of a host remain largely unclear. In particular, how can metabolite provisioning among free-living bacteria be maintained under the evolutionary pressure to economize resources? Salvaging, the process of 'recycling and reusing', can be a metabolically efficient route to obtain access to required resources. Here, we show experimentally how precursor salvaging in engineered Escherichia coli populations can lead to stable, long-term metabolite provisioning. We find that salvaged cobamides (vitamin B12 and related enzyme cofactors) are readily made available to non-productive population members, yet salvagers are strongly protected from overexploitation due to partial metabolite privatization. We also describe a previously unnoted benefit of precursor salvaging, namely the removal of the non-functional, proliferation-inhibiting precursor. As long as compatible precursors are present, any microbe possessing the terminal steps of a biosynthetic process can, in principle, forgo de novo biosynthesis in favor of salvaging. Consequently, precursor salvaging likely represents a potent, yet overlooked, alternative to de novo biosynthesis for the acquisition and provisioning of metabolites in free-living bacterial populations.


Author(s):  
Richard Essah ◽  
Darpan Anand

A collection of interconnected devices that deal with communication protocols that are common to share resources provided by nodes of a network over digital interconnections is a computer network. The process of determining the most efficient route from a source to a given target is called routing. Cisco's Enriched Internal Routing Gateway Protocol for IPv6 and the IETF's OSPFv3 (First Version 3 of Open Shortest Path) are two of the most frequently studied IPv6 routing protocols among researchers (EIGRPv6). As a result of the popularity of EIGRPv6 and OSPFv3, it is necessary to undertake a thorough contrast of the two protocols once working inside a minor enterprise network on IPv6. Thus, the study analysed the performance comparison of OSPFV3 and EIGRP with IPv6 networks with regards to convergence time, end-to-end delay, and packet loss. Packet Tracer 6.2.2 was used to compare the performance of routing protocols of different kinds. In the simulation, Cisco routers, switches, and generic computers were employed in the test. In these topologies, standard IPv6 addresses have been used. The findings of the study revealed that EIGRPv6 outperforms OSPFv3. As a result, we advocate using EIGRPv6 as an internal routing protocol in a network of IPv6.


2021 ◽  
Author(s):  
Lili Hou ◽  
Wera Larsson ◽  
Stefan Hecht ◽  
Joakim Andreasson ◽  
Bo Albinsson

Abstract Coupling semiconducting nanocrystals (NCs) with organic molecules provides an efficient route to generate and transfer triplet excitons. These excitons can be used to power photochemical transformations such as photoisomerization reactions using low energy radiation. Thus, it is desirable to develop a general approach that can efficiently be used to control photoswitches using all-visible-light aiming at future applications in life- and material sciences. Here, we demonstrate a simple ‘cocktail’ strategy that can achieve all-visible-light switchable diarylethenes (DAEs) through triplet energy transfer from the hybrid of CdS NCs and phenanthrene-3-carboxylic acid, with high photoisomerization efficiency and improved fatigue resistance. The size-tunable excitation energies of CdS NCs make it possible to precisely match the corresponding energy of the relevant DAE photoswitch. We demonstrate reversible all-visible-light photoisomerization of a series of DAE derivatives both in the liquid and solid state, even in the presence of oxygen. Our general strategy is promising for fabrication of all-visible-light activated optoelectronic devices as well as memories, and should in principle be adaptable to photopharmacology.


2021 ◽  
Vol 11 (12) ◽  
pp. 2966-2975
Author(s):  
K. Mohanaprakash ◽  
T. GunaSekar

Vehicle Ad Hoc Networks (VANETs) is a crucial communications framework for transferring messages between any healthcare systems. The dilemma of fixing the safest efficient route is a tedious issue in VANET. Hence the secure and most reliable way will give the appropriate solution for the routing issues in the VANET. In this paper, by using the Multi-Objective Bio-inspired Heuristic Cuckoo Search Node optimization algorithm is designed to find the efficient safest route for transferring health data within a short period. After seeing the efficient route, the node can be distinguished upon the traffic and security by using the Stochastic Discriminant Random Forest Node Classifier. Then in the selected route, the nodal distance can be calculated by applying the delay-based weighted end-to-end approach for traffic analysis. Then the authentic vehicle node can be analyzed through the Trust Aware extreme Gradient Boosting Node Classification based Secured Routing (TAXGBNC-SR) Technique. The obtained information that can be stored in the cloud. It deal with the multiple number of tasks gives to the ARM micro-controllers in order to perform the multiple tasks that gets logged in the cloud via Internet of Things technology (Iot).


Sign in / Sign up

Export Citation Format

Share Document