Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures

2010 ◽  
Vol 84 (6) ◽  
pp. 733-756 ◽  
Author(s):  
S. Amstutz ◽  
S. M. Giusti ◽  
A. A. Novotny ◽  
E. A. de Souza Neto
Author(s):  
Sebastián M. Giusti ◽  
Antonio A. Novotny ◽  
Eduardo A. de Souza Neto

This paper proposes an exact analytical formula for the topological sensitivity of the macroscopic response of elastic microstructures to the insertion of circular inclusions. The macroscopic response is assumed to be predicted by a well-established multi-scale constitutive theory where the macroscopic strain and stress tensors are defined as volume averages of their microscopic counterpart fields over a representative volume element (RVE) of material. The proposed formula—a symmetric fourth-order tensor field over the RVE domain—is a topological derivative which measures how the macroscopic elasticity tensor changes when an infinitesimal circular elastic inclusion is introduced within the RVE. In the limits, when the inclusion/matrix phase contrast ratio tends to zero and infinity, the sensitivities to the insertion of a hole and a rigid inclusion, respectively, are rigorously obtained. The derivation relies on the topological asymptotic analysis of the predicted macroscopic elasticity and is presented in detail. The derived fundamental formula is of interest to many areas of applied and computational mechanics. To illustrate its potential applicability, a simple finite element-based example is presented where the topological derivative information is used to automatically generate a bi-material microstructure to meet pre-specified macroscopic properties.


Author(s):  
Tim Oliver ◽  
Akira Ishihara ◽  
Ken Jacobsen ◽  
Micah Dembo

In order to better understand the distribution of cell traction forces generated by rapidly locomoting cells, we have applied a mathematical analysis to our modified silicone rubber traction assay, based on the plane stress Green’s function of linear elasticity. To achieve this, we made crosslinked silicone rubber films into which we incorporated many more latex beads than previously possible (Figs. 1 and 6), using a modified airbrush. These films could be deformed by fish keratocytes, were virtually drift-free, and showed better than a 90% elastic recovery to micromanipulation (data not shown). Video images of cells locomoting on these films were recorded. From a pair of images representing the undisturbed and stressed states of the film, we recorded the cell’s outline and the associated displacements of bead centroids using Image-1 (Fig. 1). Next, using our own software, a mesh of quadrilaterals was plotted (Fig. 2) to represent the cell outline and to superimpose on the outline a traction density distribution. The net displacement of each bead in the film was calculated from centroid data and displayed with the mesh outline (Fig. 3).


Sign in / Sign up

Export Citation Format

Share Document