A reduced order model for liquid sloshing in tanks with flexible baffles using boundary element method

2011 ◽  
Vol 89 (13) ◽  
pp. 1652-1664 ◽  
Author(s):  
M. A. Noorian ◽  
R D. Firouz-Abadi ◽  
H. Haddadpour
2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohollah Dehghani Firouz-Abadi ◽  
Mohammad Reza Borhan Panah

Purpose The purpose of this paper is to analyze the stability of aeroelastic systems using a novel reduced order aeroelastic model. Design/methodology/approach The proposed aeroelastic model is a reduced-order model constructed based on the aerodynamic model identification using the generalized aerodynamic force response and the unsteady boundary element method in various excitation frequency values. Due to the low computational cost and acceptable accuracy of the boundary element method, this method is selected to determine the unsteady time response of the aerodynamic model. Regarding the structural model, the elastic mode shapes of the shell are used. Findings Three case studies are investigated by the proposed model. In the first place, a typical two-dimensional section is introduced as a means of verification by approximating the Theodorsen function. As the second test case, the flutter speed of Advisory Group for Aerospace Research and Development 445.6 wing with 45° sweep angle is determined and compared with the experimental test results in the literature. Finally, a complete aircraft is considered to demonstrate the capability of the proposed model in handling complex configurations. Originality/value The paper introduces an algorithm to construct an aeroelastic model applicable to any unsteady aerodynamic model including experimental models and modal structural models in the implicit and reduced order form. In other words, the main advantage of the proposed method, further to its simplicity and low computational effort, which can be used as a means of real-time aeroelastic simulation, is its ability to provide aerodynamic and structural models in implicit and reduced order forms.


Sign in / Sign up

Export Citation Format

Share Document