Development of an aeroelastic model based on system identification using boundary elements method

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohollah Dehghani Firouz-Abadi ◽  
Mohammad Reza Borhan Panah

Purpose The purpose of this paper is to analyze the stability of aeroelastic systems using a novel reduced order aeroelastic model. Design/methodology/approach The proposed aeroelastic model is a reduced-order model constructed based on the aerodynamic model identification using the generalized aerodynamic force response and the unsteady boundary element method in various excitation frequency values. Due to the low computational cost and acceptable accuracy of the boundary element method, this method is selected to determine the unsteady time response of the aerodynamic model. Regarding the structural model, the elastic mode shapes of the shell are used. Findings Three case studies are investigated by the proposed model. In the first place, a typical two-dimensional section is introduced as a means of verification by approximating the Theodorsen function. As the second test case, the flutter speed of Advisory Group for Aerospace Research and Development 445.6 wing with 45° sweep angle is determined and compared with the experimental test results in the literature. Finally, a complete aircraft is considered to demonstrate the capability of the proposed model in handling complex configurations. Originality/value The paper introduces an algorithm to construct an aeroelastic model applicable to any unsteady aerodynamic model including experimental models and modal structural models in the implicit and reduced order form. In other words, the main advantage of the proposed method, further to its simplicity and low computational effort, which can be used as a means of real-time aeroelastic simulation, is its ability to provide aerodynamic and structural models in implicit and reduced order forms.

2002 ◽  
Vol 124 (4) ◽  
pp. 988-993 ◽  
Author(s):  
V. Esfahanian ◽  
M. Behbahani-nejad

An approach to developing a general technique for constructing reduced-order models of unsteady flows about three-dimensional complex geometries is presented. The boundary element method along with the potential flow is used to analyze unsteady flows over two-dimensional airfoils, three-dimensional wings, and wing-body configurations. Eigenanalysis of unsteady flows over a NACA 0012 airfoil, a three-dimensional wing with the NACA 0012 section and a wing-body configuration is performed in time domain based on the unsteady boundary element formulation. Reduced-order models are constructed with and without the static correction. The numerical results demonstrate the accuracy and efficiency of the present method in reduced-order modeling of unsteady flows over complex configurations.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Salam Adel Al-Bayati ◽  
Luiz C. Wrobel

Purpose The purpose of this paper is to describe an extension of the boundary element method (BEM) and the dual reciprocity boundary element method (DRBEM) formulations developed for one- and two-dimensional steady-state problems, to analyse transient convection–diffusion problems associated with first-order chemical reaction. Design/methodology/approach The mathematical modelling has used a dual reciprocity approximation to transform the domain integrals arising in the transient equation into equivalent boundary integrals. The integral representation formula for the corresponding problem is obtained from the Green’s second identity, using the fundamental solution of the corresponding steady-state equation with constant coefficients. The finite difference method is used to simulate the time evolution procedure for solving the resulting system of equations. Three different radial basis functions have been successfully implemented to increase the accuracy of the solution and improving the rate of convergence. Findings The numerical results obtained demonstrate the excellent agreement with the analytical solutions to establish the validity of the proposed approach and to confirm its efficiency. Originality/value Finally, the proposed BEM and DRBEM numerical solutions have not displayed any artificial diffusion, oscillatory behaviour or damping of the wave front, as appears in other different numerical methods.


Author(s):  
Mohammad Issa ◽  
Jean-René Poirier ◽  
Ronan Perrussel ◽  
Olivier Chadebec ◽  
Victor Péron

Purpose Thin conducting sheets are used in many electric and electronic devices. Solving numerically the eddy current problems in presence of these thin conductive sheets requires a very fine mesh which leads to a large system of equations, and it becomes more problematic in case of higher frequencies. The purpose of this paper is to show the numerical pertinence of equivalent models for 3D eddy current problems with a conductive thin layer of small thickness e based on the replacement of the thin layer by its mid-surface with equivalent transmission conditions that satisfy the shielding purpose, and by using an efficient discretization using the boundary element method (BEM) to reduce the computational work. Design/methodology/approach These models are solved numerically using the BEM and some numerical experiments are performed to assess the accuracy of the proposed models. The results are validated by comparison with an analytical solution and a numerical solution by the commercial software Comsol. Findings The error between the equivalent models and analytical and numerical solutions confirms the theoretical approach. In addition to this accuracy, the computational work is reduced by considering a discretization method that requires only a surface mesh. Originality/value Based on a hybrid formulation, the authors present briefly a formal derivation of impedance transmission conditions for 3D thin layers in eddy current problems where non-conductive materials are considered in the interior and the exterior domain of the sheet. BEM is adopted to discretize the problem as there is no need for volume discretization.


2017 ◽  
Vol 34 (8) ◽  
pp. 2614-2633
Author(s):  
Changzheng Cheng ◽  
Zhilin Han ◽  
Zhongrong Niu ◽  
Hongyu Sheng

Purpose The state space method (SSM) is good at analyzing the interfacial physical quantities in laminated materials, while it has difficulty in calculating the mechanical quantities of interior points, which can be easily evaluated by the boundary element method (BEM). However, the material has to be divided into many subdomains when the traditional BEM is applied to analyze the functionally graded material (FGM), so that the computational amount will be increased enormously. This study aims to couple these two methods to strengthen their advantages and overcome their disadvantages. Design/methodology/approach Herein, a state space BEM in which the SSM is coupled by the BEM is proposed to analyze the elasticity of FGMs, where one BEM domain is set and the others belong to SSM domains. The discretized elements occur only on the boundary of the BEM domain and at the interfaces between different SSM domains. In SSM domains, the horizontal interfaces of FGMs are discretized by linear elements and the variables along the vertical direction are yielded by the precise integration method. Findings The accuracy of the proposed method is verified by comparing the present results with the ones from the finite element method (FEM). It is found that the present method can provide accurate displacements and stresses in the FGMs by fewer freedom degrees in comparison with the FEM. In addition, the present method can provide continuous interfacial stresses at the interfaces between different material domains, while the interfacial stresses by the FEM are discontinuous. Originality/value The system equations of the state space BEM are built by combining the boundary integral equation with the state equations according to the continuity conditions at the interfaces. The mechanical parameters of any inner point can be evaluated by the boundary integral equation after the unknowns on the boundaries and interfaces are determined by the system equation.


Sign in / Sign up

Export Citation Format

Share Document