liquid sloshing
Recently Published Documents


TOTAL DOCUMENTS

436
(FIVE YEARS 104)

H-INDEX

31
(FIVE YEARS 4)

2021 ◽  
Vol 33 (6) ◽  
pp. 1089-1104
Author(s):  
Jin-hai Zheng ◽  
Mi-An Xue ◽  
Peng Dou ◽  
Yu-meng He
Keyword(s):  

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Weijun Wang ◽  
Jing’an Feng ◽  
Wenkang Wan ◽  
Peng Zhang ◽  
Songlin Yang

To research the influence of liquid sloshing on the driving stability of high-clearance sprayers, this paper builds an equivalent liquid sloshing mechanical model and obtains the stochastic acceleration excitation of the rectangular spray tank using the Adams kinetic model, thus obtaining the relationship between the impact force, moment, and the stochastic acceleration using Fluent numerical simulation analysis. This paper makes further calculations with MATLAB/Simulink system models, and the result from comparing these two calculations shows that the equivalent strategy proposed in this paper has a better consistency. Based on the consideration of the acting forces of the additional moment due to lateral movement of the center of mass of the liquid and the dynamic pressure due to liquid sloshing in the tank, this paper builds a mathematical model of the sprayer and researches the influence of the filling ratio and vehicle velocity on the vehicle stability through stochastic acceleration excitation. The results show that, in the case of different speeds, the liquid sloshing has a small influence on the overall roll angle; in the case of different filling ratios, the liquid sloshing has a big influence on the overall roll angle, the slip angle of the center of mass, and the yaw angular velocity; the filling ratio k = 0.85 and the speed u = 1 m/s−2 m/s are safe operation parameters of the sprayer. This research provides reference solutions for the stability control and optimization problems of the high-clearance sprayer and semitrailer.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022097
Author(s):  
Minghui Chen ◽  
Qiaorui Wu ◽  
Zhen Zhang ◽  
Huimin Yu ◽  
Ruichang Huang

Abstract This study adopts the numerical simulations of Moving Particle Semi-Implicit Methods (MPS), which are meshless methods based on Lagrange particles. Using Lagrange particle has an advantage that it can avoid numerical dissipation problems without directly discretizing the convection term in the governing equation. First of all, a numerical model of a liquid sloshing tank without baffles is used to confirm the effectiveness of the MPS by comparing the numerical results with the experimental data of Kang and Li. And the pressure curves obtained with MPS method were in good agreement with the experimental findings, which confirmed its effectiveness. On that basis, simulations of liquid sloshing movements with one baffle, two symmetrical baffles, and three baffles are performed, respectively. The results indicate that the addition of vertical baffles in the tanks effectively enhanced the ability to reduce liquid sloshing.


2021 ◽  
Vol 9 (10) ◽  
pp. 1110
Author(s):  
Lizhu Wang ◽  
Min Xu ◽  
Qian Zhang

Understanding the damping mechanism of baffles is helpful to make more reasonable use of them in suppressing liquid sloshing. In this study, the damping effect and mechanism of vertical baffles in shallow liquid sloshing under a rotational excitation are investigated by an improved particle method. By incorporation of a background mesh scheme and a modified pressure gradient model, the accuracy of impact pressure during sloshing is significantly enhanced. Combined with the advantages of the particle method, the present numerical method is a wonderful tool for the investigation of liquid sloshing issues. Through the analysis of impact pressure, the influences of baffle height and baffle position on the damping mechanism are discussed. The results show that the damping effect of vertical baffles increases with the increase of the elevation of baffle top and decreases with the increase of the elevation of the baffle bottom. Moreover, the resonance characteristics of sloshing are altered when static water is divided into two parts by the vertical baffle. The dominant damping mechanism of vertical baffles depends on the configurations.


2021 ◽  
Vol 33 (5) ◽  
pp. 938-949
Author(s):  
Xiao Wen ◽  
Wei-wen Zhao ◽  
De-cheng Wan

Sign in / Sign up

Export Citation Format

Share Document