scholarly journals Segregated Runge-Kutta methods for the incompressible Navier-Stokes equations

2015 ◽  
Vol 105 (5) ◽  
pp. 372-400 ◽  
Author(s):  
Oriol Colomés ◽  
Santiago Badia
2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Graham Ashcroft ◽  
Christian Frey ◽  
Kathrin Heitkamp ◽  
Christian Weckmüller

This is the first part of a series of two papers on unsteady computational fluid dynamics (CFD) methods for the numerical simulation of aerodynamic noise generation and propagation. In this part, the stability, accuracy, and efficiency of implicit Runge–Kutta schemes for the temporal integration of the compressible Navier–Stokes equations are investigated in the context of a CFD code for turbomachinery applications. Using two model academic problems, the properties of two explicit first stage, singly diagonally implicit Runge–Kutta (ESDIRK) schemes of second- and third-order accuracy are quantified and compared with more conventional second-order multistep methods. Finally, to assess the ESDIRK schemes in the context of an industrially relevant configuration, the schemes are applied to predict the tonal noise generation and transmission in a modern high bypass ratio fan stage and comparisons with the corresponding experimental data are provided.


2016 ◽  
Vol 20 (4) ◽  
pp. 1016-1044 ◽  
Author(s):  
Xiaodong Liu ◽  
Yidong Xia ◽  
Hong Luo ◽  
Lijun Xuan

AbstractA comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flows to DNS of turbulent flows, are presented to assess the performance of these schemes. Numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.


2000 ◽  
Vol 35 (3) ◽  
pp. 177-219 ◽  
Author(s):  
Christopher A. Kennedy ◽  
Mark H. Carpenter ◽  
R.Michael Lewis

2020 ◽  
Vol 152 ◽  
pp. 511-526
Author(s):  
V. Citro ◽  
F. Giannetti ◽  
J. Sierra

Sign in / Sign up

Export Citation Format

Share Document