aerodynamic noise
Recently Published Documents


TOTAL DOCUMENTS

960
(FIVE YEARS 186)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
Vol 93 ◽  
pp. 108892
Author(s):  
Hasan Kamliya Jawahar ◽  
SH. S. Vemuri ◽  
Mahdi Azarpeyvand

Author(s):  
Sergey Timushev ◽  
Alexey Yakovlev ◽  
Dmitry Klimenko

Subsonic flow air blade machines like UAV propellers generate intensive noise thus the prediction of acoustic impact, optimization of these machines in order to reduce the level of emitted noise is an urgent engineering task. Currently, the development of calculation methods for determining the amplitudes of pressure pulsations and noise characteristics by CFD-CAA methods is a necessary requirement for the development of computer-aided design methods for blade machines, where the determining factors are the accuracy and speed of calculations. The main objective is to provide industrial computer-aided design systems with a highly efficient domestic software to create optimal designs of UAV blade machines that provide a given level of pressure pulsations in the flow part and radiated noise. It comprises: 1) creation of a method for the numerical simulation of sound generation using the correct decomposition of the initial equations of hydrodynamics of a compressible medium and the selection of the source of sound waves in a three-dimensional definition, taking into account the rotation of blades and their interaction with the stator part of the UAV; 2) decomposition of the boundary conditions accounting pseudo-sound disturbances and the complex acoustic impedance at the boundaries of the computational domain 3) development of an effective SLAE solver for solving the acoustic-vortex equation in complex arithmetic (taking into account the boundary conditions in the form of complex acoustic impedance); 4) testing of a new method at all stages of development using experimental data on the generation of pressure pulsations and aerodynamic noise, including a propeller noise measurements.


2022 ◽  
Vol 188 ◽  
pp. 108542
Author(s):  
Hui Li ◽  
Xiaowan Liu ◽  
David Thompson ◽  
Giacomo Squicciarini
Keyword(s):  

2022 ◽  
Vol 130 (3) ◽  
pp. 1371-1386
Author(s):  
Deng Qin ◽  
Tian Li ◽  
Honglin Wang ◽  
Jizhong Yang ◽  
Yao Jiang ◽  
...  

2021 ◽  

Abstract The article is devoted to decision of actual task of air distribution efficiency increase due to swirled air jets application. The aim of the paper is investigation of swirled air jets, analytical dependencies obtaining for determination of the air velocity attenuation coefficient, aerodynamic local resistance coefficient and noise level from the twisting plates inclination angle; optimization of the twisting plates inclination angle of the air distributor. It has been established that increase of the angle results in the air velocity attenuation coefficient increase and results in decrease of the noise level and resistance coefficient of air distributor. The optimum angle of the plates is determined considering aerodynamic, noise and energy aspects and equals 36°.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012033
Author(s):  
Maymouna Malainine ◽  
Amany Khaled ◽  
Sameh M Shabaan

Abstract Vertical Axis Wind Turbines (VAWTs) are appropriate for use in populated areas. If VAWTs were installed at residential areas, the generated aerodynamic noise can be harmful in a way or another. Therefore, in the present study, the aero-acoustics of the conventional Savonius Wind turbine was investigated using Computational Fluid Dynamics (CFD). Both the Unsteady Reynolds-averaged Navier-Stokes (URANS) equations and impermeable Ffowcs Wiliams and Hawkings (FW-H) equation were simultaneously solved. The effect of speed ratio was also studied. The results indicate that; the pressure is inversely proportional to the speed ratio. Additionally, the velocity has been increased due to the increase of the tip speed ratio. Finally, it has improved that for the majority of receivers, the overall sound level increases with increasing speed ratio.


2021 ◽  
Vol 11 (23) ◽  
pp. 11235
Author(s):  
Longlong Huang ◽  
Kun Zhao ◽  
Junbiao Liang ◽  
Victor Kopiev ◽  
Ivan Belyaev ◽  
...  

The landing gear is widely concerned as the main noise source of airframe noise. The flow characteristics and aerodynamic noise characteristics of the landing gear were numerically simulated based on Large Eddy Simulation and Linearized Euler Equation, and the feasibility of the simulation model was verified by experiments. Then the wind speed effect on the flow and acoustic characteristics of the minor cavity structures in a two-wheel landing gear were analyzed. The results show that the interaction of vortices increases with the increase of velocity at the brake disc, resulting in a slight increase in the amplitude of pressure fluctuation at 55 m·s−1~75 m·s−1. With the increase of speed, the obstruction at the lower hole of torque link decreases, and many vortical structures flow out of the lower hole and are dissipated, so that the pressure fluctuation amplitude of 75 m·s−1 almost does not increase relative to 55 m·s−1. The contribution of each part in the landing gear to the overall noise is as follows: shock strut > tire > torque link > brake disc. At the speed of 34 m·s−1~55 m·s−1, the contribution of each component to the total noise increases with the increase of speed, and the small components such as torque link and brake disc contribute more to the total noise. At the speed of 55 m·s−1~75 m·s−1, the increase of overall noise mainly comes from the main components such as shock strut and tire, and the brake disc and torque link contribute very little to the overall noise. It provides a reference for the further noise reduction optimization design of the landing gear.


Sign in / Sign up

Export Citation Format

Share Document