scholarly journals A Comparative Study of Rosenbrock-Type and Implicit Runge-Kutta Time Integration for Discontinuous Galerkin Method for Unsteady 3D Compressible Navier-Stokes equations

2016 ◽  
Vol 20 (4) ◽  
pp. 1016-1044 ◽  
Author(s):  
Xiaodong Liu ◽  
Yidong Xia ◽  
Hong Luo ◽  
Lijun Xuan

AbstractA comparative study of two classes of third-order implicit time integration schemes is presented for a third-order hierarchical WENO reconstructed discontinuous Galerkin (rDG) method to solve the 3D unsteady compressible Navier-Stokes equations: — 1) the explicit first stage, single diagonally implicit Runge-Kutta (ESDIRK3) scheme, and 2) the Rosenbrock-Wanner (ROW) schemes based on the differential algebraic equations (DAEs) of Index-2. Compared with the ESDIRK3 scheme, a remarkable feature of the ROW schemes is that, they only require one approximate Jacobian matrix calculation every time step, thus considerably reducing the overall computational cost. A variety of test cases, ranging from inviscid flows to DNS of turbulent flows, are presented to assess the performance of these schemes. Numerical experiments demonstrate that the third-order ROW scheme for the DAEs of index-2 can not only achieve the designed formal order of temporal convergence accuracy in a benchmark test, but also require significantly less computing time than its ESDIRK3 counterpart to converge to the same level of discretization errors in all of the flow simulations in this study, indicating that the ROW methods provide an attractive alternative for the higher-order time-accurate integration of the unsteady compressible Navier-Stokes equations.

Author(s):  
Robert Altmann

A general framework for the regularization of constrained PDEs, also called operator differential-algebraic equations (DAEs), is presented. For this, we consider semi-explicit systems of first order which includes the Navier-Stokes equations. The proposed reformulation is consistent in the sense that the solution of the PDE remains untouched. However, one can observe improved numerical properties in terms of the sensitivity to perturbations and the fact that a spatial discretization leads to a DAE of lower index, i.e., of differentiation index $1$ instead of differentiation index 2.


2011 ◽  
Vol 9 (2) ◽  
pp. 363-389 ◽  
Author(s):  
Hong Luo ◽  
Luqing Luo ◽  
Amjad Ali ◽  
Robert Nourgaliev ◽  
Chunpei Cai

AbstractA reconstruction-based discontinuous Galerkin method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. In this method, an in-cell reconstruction is used to obtain a higher-order polynomial representation of the underlying discontinuous Galerkin polynomial solution and an inter-cell reconstruction is used to obtain a continuous polynomial solution on the union of two neighboring, interface-sharing cells. The in-cell reconstruction is designed to enhance the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. The inter-cell reconstruction is devised to remove an interface discontinuity of the solution and its derivatives and thus to provide a simple, accurate, consistent, and robust approximation to the viscous and heat fluxes in the Navier-Stokes equations. A parallel strategy is also devised for the resulting reconstruction discontinuous Galerkin method, which is based on domain partitioning and Single Program Multiple Data (SPMD) parallel programming model. The RDG method is used to compute a variety of compressible flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results demonstrate that this RDG method is third-order accurate at a cost slightly higher than its underlying second-order DG method, at the same time providing a better performance than the third order DG method, in terms of both computing costs and storage requirements.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
A. Ghidoni ◽  
A. Colombo ◽  
S. Rebay ◽  
F. Bassi

In the last decade, discontinuous Galerkin (DG) methods have been the subject of extensive research efforts because of their excellent performance in the high-order accurate discretization of advection-diffusion problems on general unstructured grids, and are nowadays finding use in several different applications. In this paper, the potential offered by a high-order accurate DG space discretization method with implicit time integration for the solution of the Reynolds-averaged Navier–Stokes equations coupled with the k-ω turbulence model is investigated in the numerical simulation of the turbulent flow through the well-known T106A turbine cascade. The numerical results demonstrate that, by exploiting high order accurate DG schemes, it is possible to compute accurate simulations of this flow on very coarse grids, with both the high-Reynolds and low-Reynolds number versions of the k-ω turbulence model.


Sign in / Sign up

Export Citation Format

Share Document