Numerical solutions of the partial differential equations for investigating the significance of partial slip due to lateral velocity and viscous dissipation: The case of blood‐gold Carreau nanofluid and dusty fluid

Author(s):  
Olubode Kolade Koriko ◽  
Kolawole S. Adegbie ◽  
Nehad Ali Shah ◽  
Isaac L. Animasaun ◽  
M. Adejoke Olotu
2018 ◽  
Vol 28 (11) ◽  
pp. 2620-2649 ◽  
Author(s):  
Rajni Rohila ◽  
R.C. Mittal

Purpose This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method. Design/methodology/approach A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids. Findings Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also. Originality/value ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.


2010 ◽  
Vol 65 (11) ◽  
pp. 935-949 ◽  
Author(s):  
Mehdi Dehghan ◽  
Jalil Manafian ◽  
Abbas Saadatmandi

In this paper, the homotopy analysis method is applied to solve linear fractional problems. Based on this method, a scheme is developed to obtain approximation solution of fractional wave, Burgers, Korteweg-de Vries (KdV), KdV-Burgers, and Klein-Gordon equations with initial conditions, which are introduced by replacing some integer-order time derivatives by fractional derivatives. The fractional derivatives are described in the Caputo sense. So the homotopy analysis method for partial differential equations of integer order is directly extended to derive explicit and numerical solutions of the fractional partial differential equations. The solutions are calculated in the form of convergent series with easily computable components. The results of applying this procedure to the studied cases show the high accuracy and efficiency of the new technique.


2021 ◽  
Vol 12 (1) ◽  
pp. 132-148

Analytical study of the free and forced convective flow of Casson fluid in the existence of viscous dissipation, ohmic effect and uniform magnetic field in a porous channel to the physical model. The nonlinear coupled partial differential equations are converted to linear partial differential equations using similarity transformation and the classical perturbation method. The physical parameters such as Prandtl number (Pr), viscous dissipation (Vi), Schmidt number (Sc), Reynolds number (R), thermal buoyancy parameter (λ), Ohmic number (Oh), Casson fluid parameter (β), Darcy number (Da), Hartmann number (M2), the concentration of buoyancy parameter (N), chemical reaction rate (γ) effect on velocity, temperature and concentration have been studied with pictorial representation. For the particular case, the present paper analysis is compared with the previous work and is found good agreement.


Author(s):  
B. V. Rathish Kumar ◽  
Gopal Priyadarshi

We describe a wavelet Galerkin method for numerical solutions of fourth-order linear and nonlinear partial differential equations (PDEs) in 2D and 3D based on the use of Daubechies compactly supported wavelets. Two-term connection coefficients have been used to compute higher-order derivatives accurately and economically. Localization and orthogonality properties of wavelets make the global matrix sparse. In particular, these properties reduce the computational cost significantly. Linear system of equations obtained from discretized equations have been solved using GMRES iterative solver. Quasi-linearization technique has been effectively used to handle nonlinear terms arising in nonlinear biharmonic equation. To reduce the computational cost of our method, we have proposed an efficient compression algorithm. Error and stability estimates have been derived. Accuracy of the proposed method is demonstrated through various examples.


Sign in / Sign up

Export Citation Format

Share Document