buoyancy parameter
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 10)

H-INDEX

15
(FIVE YEARS 2)

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 148
Author(s):  
Wenbin He ◽  
Ke Zhang ◽  
Junmei Wu ◽  
Jiang Lei ◽  
Pengfei Su ◽  
...  

In order to deepen the understanding of rotating effects on internal cooling, the flow and heat transfer characteristics of 2-pass rotating rectangular smooth/ribbed channels are investigated by Reynolds-Averaged Navier-Stokes (RANS) simulation. Three rotating numbers (Ro = 0.10, 0.25, and 0.40) are simulated, and the maximum buoyancy parameter (Bo) reaches 5.0. The results show that the rotating buoyancy has significant effects on the flow and heat transfer under high Bo conditions. When Bo > 1.0, rotating buoyancy inducts flow separation near the leading edge (LE) in the first passage, while the air flow in the second passage shows a double-peak profile. With increased Bo, the heat transfer in the first passage is greatly increased, and the maximum growth rate occurs at Bo = 0.6~1.0. However, the heat transfer in the second passage has no obvious changes due to a strong turn effect. In the ribbed channel, rotating effects are much weaker than those in the smooth channel. This research helps to improve the understanding of the internal cooling heat transfer mechanism in land-based gas turbines under typical operating conditions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ioan Pop ◽  
Mohammadreza Nademi Rostami ◽  
Saeed Dinarvand

Purpose The purpose of this article is to study the steady laminar magnetohydrodynamics mixed convection stagnation-point flow of an alumina-graphene/water hybrid nanofluid with spherical nanoparticles over a vertical permeable plate with focus on dual similarity solutions. Design/methodology/approach The single-phase hybrid nanofluid modeling is based on nanoparticles and base fluid masses instead of volume fraction of first and second nanoparticles as inputs. After substituting pertinent similarity variables into the basic partial differential equations governing on the problem, the authors obtain a complicated system of nondimensional ordinary differential equations, which has non-unique solution in a certain range of the buoyancy parameter. It is worth mentioning that, the stability analysis of the solutions is also presented and it is shown that always the first solutions are stable and physically realizable. Findings It is proved that the magnetic parameter and the wall permeability parameter widen the range of the buoyancy parameter for which the solution exists; however, the opposite trend is valid for second nanoparticle mass. Besides, mass suction at the surface of the plate as well as magnetic parameter leads to reduce both hydrodynamic and thermal boundary layer thicknesses. Moreover, the assisting flow regime always has higher values of similarity skin friction and Nusselt number relative to opposing flow regime. Originality/value A novel mass-based model of the hybridity in nanofluids has been used to study the foregoing problem with focus on dual similarity solutions. The results of this paper are completely original and, to the best of the authors’ knowledge, the numerical results of the present paper were never published by any researcher.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jamel Bouslimi ◽  
M. A. Abdelhafez ◽  
A. M. Abd-Alla ◽  
S. M. Abo-Dahab ◽  
K. H. Mahmoud

The aim of this paper is to investigate the flow of MHD mixed convection nanofluid flow under nonlinear heated due to an extending surface. The transfer of heat in nanofluid subject to a magnetic field and boundary conditions of convective is studied to obtain the physical meaning of the convection phenomenon. The governing partial differential equations (PDEs) of the boundary layer are reduced to ordinary differential equations (ODEs) considering a technique of the transformation of similarity. The transformed equations are solved numerically considering the technique of an efficient numerical shooting applying the Runge–Kutta technique scheme from the fourth-fifth order. The results corresponding to the dimensionless speed, temperature, concentration profiles, and the Nusselt number reduced, and the Sherwood numbers are presented by figures to display the physical meaning of the phenomena. A comparison has been made between the obtained results with the previous results obtained by others and agrees with them if the new parameters vanish. The results obtained indicate the impacts of the nondimensional governing parameters, namely, magnetic field parameter M, Soret number Sr, heat source λ, thermal buoyancy parameter λ T , and solutal buoyancy parameter λ C on the flow, temperature, and concentration profiles being discussed and presented graphically.


2021 ◽  
Vol 12 (1) ◽  
pp. 132-148

Analytical study of the free and forced convective flow of Casson fluid in the existence of viscous dissipation, ohmic effect and uniform magnetic field in a porous channel to the physical model. The nonlinear coupled partial differential equations are converted to linear partial differential equations using similarity transformation and the classical perturbation method. The physical parameters such as Prandtl number (Pr), viscous dissipation (Vi), Schmidt number (Sc), Reynolds number (R), thermal buoyancy parameter (λ), Ohmic number (Oh), Casson fluid parameter (β), Darcy number (Da), Hartmann number (M2), the concentration of buoyancy parameter (N), chemical reaction rate (γ) effect on velocity, temperature and concentration have been studied with pictorial representation. For the particular case, the present paper analysis is compared with the previous work and is found good agreement.


2021 ◽  
Vol 8 (1) ◽  
pp. 89-94
Author(s):  
Arief Goeritno

In this study, the heat and mass transfer of the blood flow, particularly in a capillary tube having a porous lumen and permeable wall in the presence of external magnetic field are considered. The velocity, temperature and concentration of blood flow become unsteady due to the time dependence of the stretching velocity, surface temperature and surface concentration. The thermal and mass buoyancy effect on blood flow, heat transfer and mass transfer are taken into account in the presence of thermal radiation. This analysis is very much useful in the treatment of cardiovascular disorders. The equations governing the flow under some assumptions are complex in nature, but capable of presenting the realistic model of blood flow using the theory of boundary layer approximation and similarity transformation. First, the system of coupled partial differential equations (PDEs) is converted into a system of coupled ordinary differential equations (ODEs). Then the solutions are obtained by Runge-Kutta method of 4thorder with shooting technique. The effects of various parameters such as Hartman number, radiation parameter, unsteadiness parameter, permeable parameter, thermal buoyancy parameter, Prandtl number, mass buoyancy parameter, velocity slip parameter, thermal slip parameter, Schmidt number on velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number are depicted through graphs. Local Sherwood number enhances because of increase in Schmidt number. Moreover, some of the important results, which are discussed in the present study and have an impact on diseases like hyperthermia, stoke and moyamoya in human body.


2021 ◽  
Vol 8 (1) ◽  
pp. 71-80
Author(s):  
Madhusudan Senapati ◽  
Sampada Kumar Parida

In this study, the heat and mass transfer of the blood flow, particularly in a capillary tube having a porous lumen and permeable wall in the presence of external magnetic field are considered. The velocity, temperature and concentration of blood flow become unsteady due to the time dependence of the stretching velocity, surface temperature and surface concentration. The thermal and mass buoyancy effect on blood flow, heat transfer and mass transfer are taken into account in the presence of thermal radiation. This analysis is very much useful in the treatment of cardiovascular disorders. The equations governing the flow under some assumptions are complex in nature, but capable of presenting the realistic model of blood flow using the theory of boundary layer approximation and similarity transformation. First, the system of coupled partial differential equations (PDEs) is converted into a system of coupled ordinary differential equations (ODEs). Then the solutions are obtained by Runge-Kutta method of 4thorder with shooting technique. The effects of various parameters such as Hartman number, radiation parameter, unsteadiness parameter, permeable parameter, thermal buoyancy parameter, Prandtl number, mass buoyancy parameter, velocity slip parameter, thermal slip parameter, Schmidt number on velocity, temperature, concentration, skin friction, Nusselt number and Sherwood number are depicted through graphs. Local Sherwood number enhances because of increase in Schmidt number. Moreover, some of the important results, which are discussed in the present study and have an impact on diseases like hyperthermia, stoke and moyamoya in human body.


Author(s):  
Nathan J. Kline ◽  
Stavros Tavoularis

Abstract An extensive analysis of two versions of a buoyancy parameter as supercritical heat transfer deterioration (DHT) identifiers was conducted for large databases obtained in carbon dioxide flowing through three electrically heated tubes with internal diameters equal to to 4.6, 8.0, and 22.0 mm and in Refrigerant R134a through an 8.0 mm tube. For the first time, buoyancy parameter profiles along each tube were considered for wide ranges of closely incremented operating conditions. The occurrence of DHT in each test section was first assessed confidently by observation of wall temperature profiles and comparison of measurements with wall temperature predictions of a correlation for normal heat transfer. The objective of this work was to determine whether a universal buoyancy parameter threshold could be used as a means for identifying DHT in a test section. It was found that correction factors were required for both parameters to account for an observed shift of the threshold for DHT occurrence, as the mass flux was changed. The resulting threshold for one of the buoyancy parameters identified correctly DHT for cases having a mass flux up to a certain value, but failed to do so for cases with a higher mass flux.


Coatings ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 154 ◽  
Author(s):  
Hanan Alolaiyan ◽  
Arshad Riaz ◽  
Abdul Razaq ◽  
Neelam Saleem ◽  
Ahmed Zeeshan ◽  
...  

Nanofluids are potential heat transfer fluids with improved thermophysical properties and heat transfer performance. Double diffusion convection plays an important role in natural processes and technical applications. The effect of double convection by diffusion is not limited to oceanography, but is also evident in geology, astrophysics, and metallurgy. For such a vital role of such factors in applications, the authors have presented the analytical solutions of pumping flow of third-grade nanofluid and described the effects of double diffusion convection through a compliant curved channel. The model used for the third-grade nanofluid includes the presence of Brownian motion and thermophoresis. Additionally, thermal energy expressions suggest regular diffusion and cross-diffusion terms. The governing equations have been constructed for incompressible laminar flow of the non-Newtonian nanofluid along with the assumption of long wavelength. The obtained analytical expressions for velocity, temperature, and nanoparticle concentration have been sketched for various considerable parameters. The effects of regular buoyancy ratio, buoyancy parameter, modified Dufour parameter, and Dufour-solutal Lewis number have been analyzed along with wall properties and pumping characteristics. This study concludes that fluid becomes hotter with increase in regular buoyancy ratio and a modified Dufour parameter, but a decrease in temperature is observed for the buoyancy parameter. Moreover, the solutal concentration is behaving inversely against the Defour-Solutal Lewis number.


2020 ◽  
Vol 98 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Humara Sardar ◽  
Latif Ahmad ◽  
Masood Khan

In this research paper we focus on presenting the local non-similar solutions for two-dimensional steady and mixed convective flow of electrically conducting Carreau nanofluid under the influence of Brownian motion and thermophoresis effects. This research paper also presents the new mass flux boundary condition of nanoparticles. The governing partial differential equations are converted into ordinary differential equations by using the local non-similar transformations called the Sparrow–Quack–Boerner local non-similar method. A numerical approach is used to investigate the local non-similar solutions of the entire problem. Outcomes for the skin friction and rate of heat and mass transfer have been obtained and discussed for parametric variations of the buoyancy parameter ξ, magnetic parameter M, Weissenberg number We, viscosity ratio parameter β*, Brownian motion parameter Nb, thermophoresis parameter Nt, Prandtl number Pr, and Schmidt number Sc. From the obtained results a considerable increase in the skin friction coefficient is observed with an increase in buoyancy parameter ξ. Also, ξ shows relative growth for the momentum and concentration profiles.


2019 ◽  
Vol 33 (22) ◽  
pp. 1950245 ◽  
Author(s):  
Aamir Hamid ◽  
Hashim ◽  
Masood Khan ◽  
Metib Alghamdi

The flow characteristics of Williamson nanofluids flow caused by a permeable vertical plate are investigated in this research. Influence of magnetic field on mixed convection flow in the presence of thermal radiation and heat source/sink is further studied. To develop the mathematical model of Williamson nanofluids, we employ the Brownian motion and thermophoresis impacts. By using Sparrow–Quack–Boerner local nonsimilarity method, the governing equations are transformed into a set of ordinary differential equations. Additionally, the obtained equations are numerically tackled by employing an efficient Runge–Kutta–Fehlberg method with MATLAB. The effect of emerging parameters on dimensionless velocity, temperature and concentration as well as the skin friction coefficient, the local Nusselt number and a local Sherwood number are explored with the help of graphs. The results indicate that as the value of buoyancy parameter increases, the nanofluid temperature and concentration decrease, whereas the velocity distribution increases. Further, the skin friction coefficient is increased with the higher buoyancy parameter. On the other hand, the rate of heat transfer is decreased by Brownian motion parameter. A comparison with the previous data in the literature shows good agreement with the obtained results.


Sign in / Sign up

Export Citation Format

Share Document