scholarly journals Model Order Reduction (MOR) of Function‐Perfusion‐Growth Simulation in the Human Fatty Liver via Artificial Neural Network (ANN)

PAMM ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Lena Lambers ◽  
Tim Ricken ◽  
Matthias König
2020 ◽  
Vol 6 (4) ◽  
pp. 410-430
Author(s):  
Seun Olowojebutu ◽  
Thomas Steffen ◽  
Phillip Bush

Abstract Catalysed diesel particulate filters (DPF) have been described as multifunctional reactor systems. Integration of selective catalytic reduction (SCR) functionality in the DPF creates an SCR-in-DPF system that achieves nitrous oxides (NOx) treatment along with particulate matter (PM) collection. The physical and chemical aspects of the integrated SCR-filter complicate system modelling. The goal of this work is to develop low-complexity model of the SCR-filter system which retains high fidelity. A high-fidelity model of the SCR-coated filter has been developed and validated. The performance of the model was described in a previous paper. Model complexity reduction is attempted in this paper. The objective is to achieve simulation times that can support the deployment of the model for online system control in an engine control unit. Two approaches were taken for the SCR-coated filter model order reduction (MOR): a “grey-box” approach via proper orthogonal decomposition (POD) and a “black box” approach via artificial neural network (ANN) function approximation. The POD method is shown to deliver a significant MOR while maintaining a high degree of fidelity but with less than 5% improvement in simulation time. The ANN method delivers a substantial MOR with reduction of three orders of magnitude in simulation time. The accuracy of the ANN model is satisfactory with good generalisation to new test data but noticeably inferior to the POD method.


2019 ◽  
Vol 12 (3) ◽  
pp. 145 ◽  
Author(s):  
Epyk Sunarno ◽  
Ramadhan Bilal Assidiq ◽  
Syechu Dwitya Nugraha ◽  
Indhana Sudiharto ◽  
Ony Asrarul Qudsi ◽  
...  

2020 ◽  
Vol 38 (4A) ◽  
pp. 510-514
Author(s):  
Tay H. Shihab ◽  
Amjed N. Al-Hameedawi ◽  
Ammar M. Hamza

In this paper to make use of complementary potential in the mapping of LULC spatial data is acquired from LandSat 8 OLI sensor images are taken in 2019.  They have been rectified, enhanced and then classified according to Random forest (RF) and artificial neural network (ANN) methods. Optical remote sensing images have been used to get information on the status of LULC classification, and extraction details. The classification of both satellite image types is used to extract features and to analyse LULC of the study area. The results of the classification showed that the artificial neural network method outperforms the random forest method. The required image processing has been made for Optical Remote Sensing Data to be used in LULC mapping, include the geometric correction, Image Enhancements, The overall accuracy when using the ANN methods 0.91 and the kappa accuracy was found 0.89 for the training data set. While the overall accuracy and the kappa accuracy of the test dataset were found 0.89 and 0.87 respectively.


Sign in / Sign up

Export Citation Format

Share Document