Emission Control Science and Technology
Latest Publications


TOTAL DOCUMENTS

199
(FIVE YEARS 94)

H-INDEX

14
(FIVE YEARS 5)

Published By Springer-Verlag

2199-3637, 2199-3629

Author(s):  
Rojin Feizie Ilmasani ◽  
Phuoc Hoang Ho ◽  
Aiyong Wang ◽  
Dawei Yao ◽  
Derek Creaser ◽  
...  

AbstractPassive NOx adsorption (PNA) is a method, in which NOx can be stored at low temperatures and released at higher temperatures where the urea decomposition is functional during selective catalytic reduction (i.e., above 180–200 °C). We have studied the promotion of Pd/BEA with La as a PNA in the presence of high CO concentration. Both the reference and promoted samples exhibited a significant loss of NOx adsorption/desorption capacity after multiple cycles using 4000 ppm CO. However, already after 5 cycles, 99% of the NOx released between 200 and 400 °C was lost for Pd/BEA, compared to only 64% for Pd-La/BEA, which thereafter was stable. XPS and O2-TPD clearly showed that the Pd species were influenced by La. The PNA deactivation in the presence of CO could be related to Pd reduction followed by migration and the formation of more PdOx clusters, as observed by O2-TPD analysis. Interestingly, significantly more PdOx clusters formed on Pd/BEA after 10 cycles compared to Pd-La/BEA.


Author(s):  
Florian Rümmele ◽  
Alexander Susdorf ◽  
Syed Muhammad Salman Haider ◽  
Robert Szolak

AbstractSynthetic fuels and fuel blends like OMEs can contribute to tank-to-wheel CO2 emission savings. At the same time, it is known that these fuels have a lower exhaust temperature compared to conventional diesel. This effect has major impact on the exhaust after-treatment system, particularly in cold start conditions. This paper investigates the light-off behavior of exhaust gases containing OMEs by temperature-programmed oxidation experiments using a state-of-the-art oxidation catalyst. The main side product of catalytic oxidation of OMEs between 100 °C and the oxidation temperature T50, which was around 160 °C, was shown to be formaldehyde. While alkane oxidation, in this case heptane, was little influenced by OME oxidation, the oxidation temperature T50 of CO increases by more than 10 °C by OME addition. Nitrogen monoxide impeded the oxidation of OME in a similar way to the other components investigated. Due to the amount of FA produced and its toxicity, it could be concluded that it is necessary to heat up exhaust after-treatment systems of OME diesel engines even faster than conventional diesel exhaust after-treatment systems. The relatively high reactivity of OME on oxidation catalyst can be used by active thermal management approaches.


Author(s):  
Xavier Auvray ◽  
Maria Arvanitidou ◽  
Åsa Högström ◽  
Jonas Jansson ◽  
Sheedeh Fouladvand ◽  
...  

AbstractTwo copper-exchanged zeolites, Cu/SSZ-13 and Cu/BEA, were studied as catalysts for the selective reduction of NOx by NH3 (NH3-SCR). Their activities for standard SCR (NOx = NO) and fast SCR (NOx = 50% NO + 50% NO2) were measured before and after sulfur poisoning at 250 °C. The effect of 30 ppm SO2 and a mixture of 24 ppm SO3 + 6 ppm SO2 was evaluated. The repetition of subsequent activity measurements served as regeneration method in SCR conditions. SO2 deactivated Cu/SSZ-13 whereas Cu/BEA was only moderately affected. SO3 led to stronger deactivation of both catalysts than SO2. However, also for this case, the Cu/BEA was significantly less affected than Cu/SSZ-13, even though Cu/BEA contained larger amount of stored sulfur. One possible reason for this could be the large pores of Cu/BEA, where the sulfur species possibly resulted in less sterical hindrance than in the small pore SSZ-13 structure. NH3 temperature-programmed desorption (NH3-TPD) showed no loss of storage sites upon sulfur treatment and subsequent regeneration. Partial activity recovery was observed after a period in SCR conditions at 400 °C and 500 °C. Temperature at 300 °C was insufficient to regenerate the catalysts. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) of NO adsorption suggested that SO2 interacts with the ZCuOH sites on Cu/SSZ-13, causing the strong poisoning.


Author(s):  
Jonathan Lock ◽  
Kristoffer Clasén ◽  
Jonas Sjöblom ◽  
Tomas McKelvey

AbstractWe present a three-way catalyst (TWC) cold-start model, calibrate the model based on experimental data from multiple operating points, and use the model to generate a Pareto-optimalcold-start controller suitable for implementation in standard engine control unit hardware. The TWC model is an extension of a previously presented physics-based model that predicts carbon monoxide, hydrocarbon, and nitrogen oxides tailpipe emissions. The model axially and radially resolves the temperatures in the monolith using very few state variables, thus allowing for use with control-policy based optimal control methods. In this paper, we extend the model to allow for variable axial discretization lengths, include the heat of reaction from hydrogen gas generated from the combustion engine, and reformulate the model parameters to be expressed in conventional units. We experimentally measured the temperature and emission evolution for cold-starts with ten different engine load points, which was subsequently used to tune the model parameters (e.g. chemical reaction rates, specific heats, and thermal resistances). The simulated cumulative tailpipe emission modeling error was found to be typically − 20% to + 80% of the measured emissions. We have constructed and simulated the performance of a Pareto-optimal controller using this model that balances fuel efficiency and the cumulative emissions of each individual species. A benchmark of the optimal controller with a conventional cold-start strategy shows the potential for reducing the cold-start emissions.


Author(s):  
Chung Ting Lao ◽  
Jethro Akroyd ◽  
Alastair Smith ◽  
Neal Morgan ◽  
Kok Foong Lee ◽  
...  

AbstractThis paper investigates the impact of thermal treatment on the pressure drop of particulate filters containing ash deposits. A one-dimensional model has been developed and applied to describe the deposition of soot and ash particles, and estimate the spatial distribution of the deposits in such filters. Phenomenological models have been developed to describe the potential sintering and cracking of the ash deposits caused by thermal treatment of the filter. The model results are in good agreement with experimental measurements of the reduction in the pressure drop in thermally treated filters. It was found that crack formation in the ash layer can lead to significant reduction of the pressure drop at relatively low temperatures. Sintering of ash deposits in the wall and the ash plug also contributes towards a decrease in filter pressure drop at higher temperatures. This work is the first attempt to model the impact of the thermal treatment of ash in particulate filters in order to support the development of future ash management strategies. The cracking of the ash layer during the thermal treatment has been identified to be the most critical effect for pressure drop reduction.


Sign in / Sign up

Export Citation Format

Share Document