scholarly journals The rhg1‐a ( Rhg1 low‐copy) nematode resistance source harbors a copia‐family retrotransposon within the Rhg1‐ encoded α‐SNAP gene

Plant Direct ◽  
2019 ◽  
Vol 3 (8) ◽  
Author(s):  
Adam M. Bayless ◽  
Ryan W. Zapotocny ◽  
Shaojie Han ◽  
Derrick J. Grunwald ◽  
Kaela K. Amundson ◽  
...  
2015 ◽  
Vol 2 (1) ◽  
pp. 12-22 ◽  
Author(s):  
L. Pylypenko ◽  
K. Kalatur

Heterodera schachtii Schmidt, 1871 is one of the most economically important pests of sugar beet (Beta vulgaris L.) worldwide. It is also widespread in most sugar beet growing regions in Ukraine causing serious yield reduction and decreasing sugar content of sugar beet in infested fi elds. An advanced parasitic strategy of H. schachtii is employed to support nematode growth, reproduction and harmfulness. In intensive agriculture systems the nematode control measures heavily rely on nematicides and good agricultural practice (crop rota- tion in the fi rst place). But alternative strategies based on nematode resistant sugar beet cultivars and hybrids are required as none of nematicides approved for the open fi eld application are registered in Ukraine. Here we review the achievements and problems of breeding process for H. schachtii resistance and provide the results of national traditional breeding program. Since the beginning of 1980s fi ve sugar beet cultivars (Verchnyatskyi 103, Yaltuschkivska 30, Bilotcerkivska 45, BTs-40 and Yuvileynyi) and seventeen lines partly resistant or toler- ant to H. schachtii have been obtained throughout targeted crossing and progenies assessment in the infested fi elds. The further directions for better utilization of genetic sources for nematode resistance presented in na- tional gene bank collection are emphasized. There is a need for more accurate identifi cation of resistance genes, broader application of reliable molecular markers (suitable for marker-assisted selection of nematode resistant plants in the breeding process) and methods for genetic transformation of plants. Crop cash value and national production capacity should drive the cooperation in this fi eld. Knowledge as well as germplasm exchange are thereby welcomed that can benefi t breeding progress at national and international level.


2020 ◽  
Vol 80 (03) ◽  
Author(s):  
Ik-Young Choi ◽  
Prakash Basnet ◽  
Hana Yoo ◽  
Neha Samir Roy ◽  
Rahul Vasudeo Ramekar ◽  
...  

Soybean cyst nematode (SCN) is one of the most damaging pest of soybean. Discovery and characterization of the genes involved in SCN resistance are important in soybean breeding. Soluble NSF attachment protein (SNAP) genes are related to SCN resistance in soybean. SNAP genes include five gene families, and 2 haplotypes of exons 6 and 9 of SNAP18 are considered resistant to the SCN. In present study the haplotypes of GmSNAP18 were surveyed and chacterized in a total of 60 diverse soybean genotypes including Korean cultivars, landraces, and wild-types. The target region of exons 6 and 9 in GmSNAP18 region was amplified and sequenced to examine nucleotide variation. Characterization of 5 haplotypes identified in present study for the GmSNAP18 gene revealed two haplotypes as resistant, 1 as susceptible and two as novel. A total of twelve genotypes showed resistant haplotypes, and 45 cultivars were found susceptible. Interestingly, the two novel haplotypes were present in 3 soybean lines. The information provided here about the haplotypic variation of GmSNAP18 gene can be further explored for soybean breeding to develop resistant varieties.


Crop Science ◽  
1978 ◽  
Vol 18 (6) ◽  
pp. 1008-1011 ◽  
Author(s):  
O. D. Smith ◽  
T. E. Boswell ◽  
W. H. Thames

Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 470
Author(s):  
Min Zhang ◽  
Hongyuan Zhang ◽  
Jie Tan ◽  
Shuping Huang ◽  
Xia Chen ◽  
...  

Eggplant (Solanum melongena L.), which belongs to the Solanaceae family, is an important vegetable crop. However, its production is severely threatened by root-knot nematodes (RKNs) in many countries. Solanum torvum, a wild relative of eggplant, is employed worldwide as rootstock for eggplant cultivation due to its resistance to soil-borne diseases such as RKNs. In this study, to identify the RKN defense mechanisms, the transcriptomic profiles of eggplant and Solanum torvum were compared. A total of 5360 differentially expressed genes (DEGs) were identified for the response to RKN infection. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that these DEGs are mainly involved in the processes of response to stimulus, protein phosphorylation, hormone signal transduction, and plant-pathogen interaction pathways. Many phytohormone-related genes and transcription factors (MYB, WRKY, and NAC) were differentially expressed at the four time points (ck, 7, 14, and 28 days post-infection). The abscisic acid signaling pathway might be involved in plant-nematode interactions. qRT-PCR validated the expression levels of some of the DEGs in eggplant. These findings demonstrate the nematode-induced expression profiles and provide some insights into the nematode resistance mechanism in eggplant.


Plant Science ◽  
2003 ◽  
Vol 164 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Maria Rosaria Cortese ◽  
Elena Fanelli ◽  
Carla De Giorgi

2001 ◽  
Vol 79 (1-2) ◽  
pp. 15-29 ◽  
Author(s):  
R.A. Clarke ◽  
A.L. Burn ◽  
I. Lenane ◽  
R.G. Windon ◽  
K.J. Beh

Sign in / Sign up

Export Citation Format

Share Document